K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Chọn D

4 tháng 9 2017

Chọn D

2 tháng 2 2019

tích phân (| e^x -x |) cận từ 0->1

14 tháng 2 2017

Đáp án C

Ta có  S = ∫ 1 e 1 + ln x x d x   . Đặt   1 + ln x = t ⇒ ln x = t 2 − 1 ⇒ 1 x = d x = 2 t d t

Đổi cận:  x = 1 ⇒ t = 1 ;    x = e ⇒ t = 2

⇒ S = ∫ 1 2 t .2 t d t = 2 t 3 3 2 1 = 4 2 3 − 2 3 = 4 2 − 2 3 ⇒ a = 4 3 b = − 2 3

⇒ a 2 + b 2 = 16 9 + 4 9 = 20 9

20 tháng 11 2017

18 tháng 12 2019

1/2

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

1.

\(V=\pi \int ^4_1[x^{\frac{1}{2}}e^{\frac{x}{2}}]^2dx=\pi \int ^4_1(xe^x)dx\)

\(=\pi \int ^4_1xd(e^x)=\pi (|^4_1xe^x-\int ^4_1e^xdx)\)

\(=\pi |^4_1(xe^x-e^x)=\pi (3e^4)=3\pi e^4\) 

 

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

2.

\(V=\pi \int ^1_0(x\sqrt{\ln (x^3+1)})^2dx=\pi \int ^1_0x^2\ln (x^3+1)dx\)

\(=\frac{1}{3}\pi \int ^1_0\ln (x^3+1)d(x^3+1)\)

\(=\frac{1}{3}\pi \int ^2_1ln tdt=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1td(\ln t))\)

\(=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1dt)=\frac{1}{3}\pi |^2_1(t\ln t-t)=\frac{1}{3}\pi (2\ln 2-1)\)

 

 

NV
24 tháng 3 2023

\(\left(x+1\right)e^x=0\Rightarrow x=-1\)

\(S=\int\limits^0_{-2}\left|\left(x+1\right)e^x\right|dx=-\int\limits^{-1}_{-2}\left(x+1\right)e^xdx+\int\limits^0_{-1}\left(x+1\right)e^xdx\)

\(=\dfrac{2e-2}{e^2}\)

27 tháng 8 2018

Hoành độ giao điểm của hai đường là nghiệm của phương trình

Chọn D.

14 tháng 2 2019