Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = SB, SC =SD, ( S A B ) ⊥ ( S C D ) và tổng diện tích hai tam giác SAB và SCD bằng 7 a 2 10 Tính thể tích V của khối chóp S.ABCD?
A. V = a 3 5
B. V = 4 a 3 15
C. V = 4 a 3 25
D. V = 12 a 3 25
Đáp án C
Gọi M, N lần lượt là trung điểm của AB và CD
Tam giác SAB cân tại S suy ra S M ⊥ A B
⇒ S M ⊥ d , với d = ( S A B ) ∩ ( S C D )
Vì ( S A B ) ⊥ ( S C D ) suy ra S M ⊥ ( S C D )
Kẻ S H ⊥ M N ⇒ S H ⊥ ( A B C D )
Ta có S ∆ S A B + S ∆ S C D = 7 a 2 10
⇒ S M + S N = 7 a 5
Tam giác SMN vuông tại S nên S M 2 + S N 2 = M N 2 = a 2
Giải hệ S M + S N = 7 a 5 S M 2 + S N 2 = a 2
Vậy thể tích khối chóp V S . A B C D = 1 3 . S A B C D . S H = 4 a 3 25