K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

Đáp án D

12 tháng 5 2017

Đáp án D

Phương pháp:

Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m

Cách giải:

Từ đồ thị hàm số y = f(x) ta có đồ thị hàm số y = |f(x)| như hình bên:

 

Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m

⇒ Để phương trình |f(x)| = m có 4 nghiệm phân biệt thì 1 < m < 3

28 tháng 6 2019

Chọn đáp án D.

21 tháng 3 2018

Đáp án A

Dựa vào đồ thị hàm số y = f x , để phương trình f x = m  có 2 nghiệm phân biệt  ⇔ m > 5 0 < m < 1

22 tháng 10 2019

Đáp án A

14 tháng 1 2018

Chọn D.

Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.

Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5

10 tháng 4 2017

Chọn B

5 tháng 5 2017

Đáp án C

Yêu cầu bài toán  ⇔ 4 m + 2 log 4 2 ∈ 0 ; 2 ⇔ 2 m + 4 log 4 2 < 1 ⇔ m < 0

20 tháng 6 2017

Chọn D

11 tháng 10 2018

Đáp án C.

- Lấy đối xứng phần đồ thị hàm số y = f(x) nằm phía dưới trục hoành lên phía trên trục hoành ta được đồ thị hàm số y = |f(x)| (như hình bên). - Số nghiệm của phương trình |f(x)| = m là số giao điểm của đồ thị hàm số y = |f(x)| với đường thẳng y = m. Phương trình |f(x)| = m có 6 nghiệm thực phân biệt  ⇔ 1 < m < 2.