Cho dãy số (un) biết u 1 = 2 u 2 = 2 u n = u n - 2 - 2 u n - 1 n ≥ 3 Số hạng thứ 4 của dãy số (un) bằng
A. 0
B. 21
C. -9
D. 34
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) Lấy biến C để tính un và E để tính sn và D là biến đếm. Ta có quy trình bấm phím liên tục
D=D+1:C=2B+A:E=E+C:A=B:B=C
CALC giá trị A=2; B=20; D=2; E=22 nhấn "=" liên tục
Kết quả: u20 = 137990600; s20 = 235564680; u30 = 928124755084; s30 = 1584408063182
2. Lấy A làm biến lẻ, B làm biến chẵn, C là tổng S, D là biến đếm. Ta có quy trình bấm phím liên tục
D=D+1:A=2B+3A:C=C+A:D=D+1:B=2A+3B:C=C+B
CALC giá trị D=2; A=1; B=2; C=3 nhấn "=" liên tục
a) Kết quả: u10 = 28595; u15 = 8725987; u20 = 3520076983
b) Kết quả: s10 = 40149; s15 =13088980 ; s20 = 4942439711
\(u_n=1+2\left(n-1\right)=1+2n-2=2n-1\left(\text{*}\right)\)
Chứng minh
Với \(n=1\)
\(VT=1;VP=2\cdot1-1=1=VT\)
Vậy \(\left(\text{*}\right)\) đúng với \(n=1\)
Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\ge1\) tức là
\(u_k=u_{k-1}+2=2k-1\)
Ta chứng minh \(\left(\text{*}\right)\) đúng với \(n=k+1\)
Thật vậy, từ giả thuyết quy nạp ta có
\(u_{k+1}=u_k+2=2k-1+2=2k+2-1=2\left(k+1\right)-1\)
Vậy ...
\(u_{n+1}-1=u_n\left(u_n-1\right)\Leftrightarrow\dfrac{1}{u_{n+1}-1}=\dfrac{1}{u_n-1}-\dfrac{1}{u_n}\Rightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)
Lan luot the i vo n:
\(\dfrac{1}{u_1}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)
\(\dfrac{1}{u_2}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)
...
\(\dfrac{1}{u_n}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)
Cong ve voi ve:
\(\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}=\dfrac{1}{u_1-1}-\dfrac{1}{u_{n+1}-1}\)
Do dãy tăng và ko bị chặn trên <bạn thay vô là biết>
\(\Rightarrow\lim\limits\left(u_{n+1}-1\right)=+\infty\Rightarrow\lim\limits\sum\limits^n_{i=1}\dfrac{1}{u_i}=\lim\limits\left(\dfrac{1}{u_1-1}-\dfrac{1}{u_{n+1}-1}\right)=1\)