chứng minh nếu a+b+c chia hết cho 5 thì a^5+b^5+c^5 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a-11b+3c⋮17\)
\(\Leftrightarrow19.\left(a-11b+3c\right)⋮17\)
\(\Leftrightarrow19a-209b+57c⋮17\)
\(\Leftrightarrow\left(17a-204b+51c\right)+\left(2a-5b+6c\right)⋮17\)
\(\Rightarrow\left(2a-5b+6c\right)⋮17\)(vì 17a - 204b + 51c đã chia hết cho 17 )
\(\RightarrowĐCPM\)
a) Nếu một trong hai số a và b là chẵn thì => a . b . ( a + b ) là một số chẵn => chia hết cho 2
Nếu cả hai số a và b đều là số lẻ => a + b là một số chẵn = > a . b . ( a + b ) là một số chẵn => chia hết cho 2
Nếu cả hai số a và b đều là số chẵn => a . b . ( a + b ) là một số chẵn => chia hết cho 2
Vậy với mọi trường hợp thfi a . b . ( a + b ) luôn chia hết cho 2
( đpcm )
b) Để a + b không chia hết cho 2 => hai số a và b không cùng tính chẵn lẻ => thì một trong hai số là số chẵn
Khi một trong hai số a và b là chẵn thì tích a x b cũng sẽ là một số chẵn => a x b chia hết cho 2
Vậy nếu a + b không chia hết cho 2 thi tích a x b chia hết cho 2
( đpcm )
Ta có:5a+3b và 13a+8b chia hết cho 2012
=>2(13a+8b)-5(5a+3b) chia hết cho 2012
=>26a+16b-25a-15b chia hết cho 2012
=>a+b chia hết cho 2012
=>8a+8b chia hết cho 2012
=>(13a+8b)-(8a+8b) chia hết cho 2012
=>5a chia hết cho 2012
Mà (5,2012)=1
=>a chia hết cho 2012
Mặt khác a+b chia hết cho 2012
=>b chia hết cho 2012
Vậy a và b chia hết cho 2012(đpcm)
5a +3b chia hết cho 2012=>8 ."5a +3b"chia hết cho 2012 =>40a +24b chia hết cho 2012
13a +8b chia hết cho 2012=>3 "13a+8b" chia hết cho 2012=>39a+24b chia hết cho 2012
=>40a +24b- "39a+24b" chia hết cho 2012+> a chia hết cho 2012
5a +3b chia hết cho 2012=>13"5a+3b' chia hết cho 2012 =>65a+39b chia hết cho 2012
13a+8b chia hết cho 2012 =>5"13a+8b"chia hết cho 2012=>65a+40b chia hết cho 2012
=> 65a +40b - "65a+39b"chia hết cho 2012=>b chia hết cho 2012
Vậy .....
cáy bài thầy nho ra mà mỏi bữa tau làm được bài kiểm tra thầy bình đó