Tìm x:
x - 1 2 = 2 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tìm x,y để (x+1)(y^2-6)=0
2.Tìm x biết x^2-12x+7=7
3.Tìm giá trị nhỏ nhất của A=(x+2)^2+(Y-1/5)^2-10
a) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
(x + 4)2 - (x + 1) (x - 1) = 16
<=> (x2 + 8x + 16) - (x2 - 1) = 16
<=> x2 + 8x + 16 - x2 + 1 = 16
<=> 8x + 17 = 16
<=> 8x = -1
<=> x = −\(\dfrac{1}{8}\)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2+1-4x+\left(x^2+9+6x\right)-5\left(x^2-7^2\right)=0\)
\(4x^2+1-4x+x^2+9+6x-5x^2+245=0\)
\(\left(4x^2+x^2-5x^2\right)-\left(4x+6x\right)+\left(1+9+245\right)=0\)
\(2x+255=0\)
\(2x=-255\)
\(x=\dfrac{-255}{2}\)
P/s: Nhớ tick cho mình nha. Thanks bạn
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
a: =>7/9:x=1/18-2/9=1/18-4/18=-3/18=-1/6
=>x=-7/9:1/6=-7/9*6=-42/9=-14/3
b: =>x*7/5=2/15+2/5=8/15
=>x=8/15:7/5=8/21
c: =>x-1/2=3/14:4/7=3/8
=>x=3/8+4/8=7/8
d: =>0,4x+0,3x-0,2x=0,7
=>0,5x=0,7
=>x=1,4
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3
a) \(\Rightarrow x^2+8x+16-x^2+1=19\)
\(\Rightarrow8x=2\Rightarrow x=\dfrac{1}{4}\)
b) \(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Rightarrow2x=-255\Rightarrow x=-\dfrac{255}{2}\)
a: Ta có: \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=19\)
\(\Leftrightarrow x^2+8x+16-x^2+1=19\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
b: Ta có: \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow2x=-255\)
hay \(x=-\dfrac{255}{2}\)
\(\left(5-x\right)\left(x-2\right)+\left(x-7\right)\left(x+7\right)=\left(3x-1\right)^2-\left(3x-2\right)\left(3x+2\right)\\ \Leftrightarrow-x^2+7x-10+x^2-49=9x^2-6x+1-9x^2+4\\\Leftrightarrow7x-59=-6x+5\\ \Leftrightarrow13x=44\\ \Leftrightarrow x=\dfrac{64}{13} \)