K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Ta có:  x   +     x   <   (   2       x   +   3   ) (     x     -   1   )

Điều kiện: x ≥ 0

⇔   x   +     x   <   2 x   -   2   x   +   3   x -   3

⇔ - x < - 3 ⇔ x > 3

Kết hợp điều kiện, tập nghiệm bất phương trình là: x > 3

Vậy bất phương trình đã cho có tập nghiệm là x > 3

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

14 tháng 4 2018

 Ta có:  x   +     x   <   (   2   x   +   3   ) (     x   -   1   )

Điều kiện: x ≥ 0

⇔   x   +   x   <   2 x   -   2   x     +   3 x     -   3

⇔ - x < - 3 ⇔ x > 3

Kết hợp điều kiện, tập nghiệm bất phương trình là: x > 3

24 tháng 6 2018

Ta có:  x − 3 x − 2 ≥ 0

Điều kiện: x ≥ 2

Bất phương trình tương đương là  x − 3 ≥ 0 x − 2 = 0 ⇔ x ≥ 3 x = 2

Vậy tập nghiệm của bất phương trình là  S = { 2 } ∪ [3;+ ∞ )

10 tháng 8 2019

Ta có:  ( x   -   3 ) ( x   -   2 )   ≥   0

Điều kiện: x ≥ 2

Bất phương trình tương đương làBài tập: Bất phương trình bậc nhất một ẩn | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy tập nghiệm của bất phương trình là x = 2 hoặc x ≥ 3

16 tháng 4 2019

Đáp án A

26 tháng 10 2018

31 tháng 3 2020

a)11x-7<8x+7

<-->11x-8x<7+7

<-->3x<14

<--->x<14/3 mà x nguyên dương 

---->x \(\in\){0;1;2;3;4}

31 tháng 3 2020

b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4

<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)

<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48

<--->21x>-45

--->x>-45/21=-15/7  mà x nguyên âm 

----->x \(\in\){-1;-2}

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)