Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC=AD=BC=BD=a, CD=2x. Tính giá trị của x sao cho hai mặt phẳng (ABC) và (ABD) vuông góc với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp:
Xác định góc giữa hai mặt phẳng
- Tìm giao tuyến
- Xác định 1 mặt phẳng
- Tìm các giao tuyến
- Góc giữa hai mặt phẳng
Cách giải:
Gọi M là trung điểm của CD.
Do tam giác ACD và BCD là các tam giác cân tại A, B
và
Dễ dàng chứng minh được tại I
suy ra
Lại có:
Từ (1), (2) suy ra:
Chọn: B
Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.
⇒ IK ⊥ AD (2)
Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.
Chọn B.
Phương pháp:
Ta xác định tâm mặt cầu ngoại tiếp tứ diện ABCD chính là điểm cách đều bốn đỉnh A, B, C, D.
Dựa vào tính chất tam giác cân, hai tam giác bằng nhau, tỉ số lượng giác để chứng minh các đoạn thẳng bằng nhau từ đó tìm được tâm mặt cầu.
Cách giải:
Các tam giác đều ABC và BCD có cạnh 2
⇒ B D = D C = B C = A B = A C = 2
Nên tam giác CAD cân tại C và tam giác BAD cân tại B.
Từ (1) và (2) suy ra tam giác CHB vuông cân tại H có cạnh huyền CB = 2.