Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a; cạnh bên trùng với đáy một góc φ sao cho A' có hình chiếu xuống mặt phẳng (ABC) trùng với trọng tâm của △ ABC. Tính thể tích khối lăng trụ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Từ giả thiết suy ra tứ diện A'ABC đều có cạnh a nên có thể tích là
V A ' A B C = a 3 2 12
Khi đó
V A B C . A ' B ' C ' = d A ' , A B C . S A B C = 3 V A ' A B C = a 3 2 4
Đáp án B
Ta thấy A ' . A B C là tứ diện đều cạnh a → V A ' . A B C = a 3 2 12
Vậy thể tích khối lăng trụ A B C . A ' B ' C ' là V = 3 × V A ' . A B C = 3. a 3 2 12 = a 3 2 4
Đáp án B
Ta có: A O = 2 3 2 a 2 − a 2 = 2 a 3 3
A ' A = 2 a 6 3 2 − 2 a 3 3 2 = 2 a 3 S A B C = 1 2 . 2 a 2 sin 60 ∘ = a 2 3
Thể tích khối lăng trụ là: V = S A B C . A ' A = a 2 3 . 2 a 3 = 2 a 3 .
Phương pháp:
Thể tích khối lăng trụ: V = Sh
Cách giải:
Gọi I là trung điểm của BC, kẻ AH ⊥ A'I
∆
ABC đều cạnh a
Ta có:
Ta có:
Mà
Chọn: A
Đáp án A