K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Đáp án A

Dễ dàng suy ra:

A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c , a , b , c > 0

vì d M ; O B C = d M ; O y z = x M = 1 , tương tự ta có được  M 1 ; 2 ; 3

M ∈ A B C ⇔ 1 a + 2 b + 3 c ≥ 3 1.2.3 a . b . c 3 ⇔ a b c 6 = V O . A B C ≥ 27

Dấu bằng xảy ra khi:

1 a = 2 b = 3 c = 1 3 ⇒ a = 3 ; b = 6 ; c = 9 ⇒ a + b + c = 18

19 tháng 11 2019

Chọn C.

2 tháng 10 2019

Đáp án C

26 tháng 1 2019

13 tháng 2 2018

Chọn D

Gọi A (a;0;0), B (0;b;0), C (0;0;c), do A, B, C thuộc ba tia Ox, Oy, Oz nên a, b, c > 0.

15 tháng 7 2019

Đáp án C.

Phương pháp: 

- Viết phương trình mặt phẳng α .  

- Tìm tọa độ giao điểm B, C của  α với trục Oy, Oz.

- Tính thể tích khối tứ diện vuông OABC: V = 1 6 . O A . O B . O C .  

Cách giải:

Giả sử n → a ; b ; c ,   a 2 + b 2 + c 2 ≠ 0  là một vecto pháp tuyến của (P).

Vì α đi qua A 2 ; 0 ; 0 nên PTTQ của (P):

a x − 2 + b y − 0 + c z − 0 = 0  

⇔ a x + b y + c z − 2 a = 0.  

Vì α  vuông góc với α nên n → a ; b ; c  vuông góc với n 1 → 0 ; 2 ; − 1 .  

Khi đó,

0. a + 2. b + − 1 . c = 0 ⇔ c = 2 b  

⇒ α : a x + b y + 2 b z − 2 a = 0  

d O ; α = 4 3 ⇔ − 2 a a 2 + b 2 + 4 b 2 = 4 3 ⇔ 6 a 2 = 16 a 2 + 5 b 2 ⇔ a 2 = 4 b 2 ⇔ a = 2 b a = − 2 b  

Cho

b = 1 ⇒ a = 2 a = − 2 ⇒ n → 2 ; 1 ; 2 n → − 2 ; 1 ; 2 ⇒ α : 2 x + y + 2 z − 4 = 0 α : − 2 x + y + 2 z + 4 = 0  

+ )   α : 2 x + y + 2 z − 4 = 0 ⇒ B 0 ; 4 ; 0 ,   C 0 ; 0 ; 2 ⇒ V O A B C = 1 6 . 2 . 4 . 2 = 8 3  

+ )   α : − 2 x + y + 2 z + 4 = 0 ⇒ B 0 ; − 4 ; 0 ,   C 0 ; 0 ; − 2 ⇒ V O A B C = 1 6 . 2 . − 4 . − 2 = 8 3  

Vậy thể tích khối tứ diện OABC là 8 3 .  

17 tháng 9 2018

Đáp án C

28 tháng 7 2019

Đáp án C

Phương pháp

+) Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a, b, c  ≠ 0) viết phương trình mặt phẳng (P) đi qua A, B, C dạng đoạn chắn.M ∈ (P)=>  Thay tọa độ điểm M vào phương trình mặt phẳng (P).

+) Ứng với mỗi trường hợp tìm các ẩn a, b, c tương ứng

Cách giải

Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a, b, c  0)  khi đó phương trình mặt phẳng đi qua A, B, C là  

TH1: a=b=c  thay vào (*) có 

TH2: a=b=-c  thay vào (*) có 

TH3: a=-b=c  thay vào (*) có 

TH4: a=-b=-c  thay vào (*) có 

Vậy có 4 mặt phẳng thỏa mãn.

30 tháng 7 2018

17 tháng 6 2019

Chọn đáp án C.

26 tháng 4 2018

Đáp án A

Gọi A a ; 0 ; 0 , B ( 0 ; b ; 0 ) , C 0 ; 0 ; c →  phương trình mặt phẳng (ABC) là  x a + y b + z c = 1

Vì điểm M 1 ; 2 ; 3 ∈ P ⇒ 1 a + 2 b + 3 c = 1 , ta có 1 a + 2 b + 3 c 2 ≤ 1 2 + 2 2 + 3 2 1 a 2 + 1 b 2 + 1 c 2  

Khi đó 1 O A 2 + 1 O B 2 + 1 O C 2 = 1 a 2 + 1 b 2 + 1 c 2 ≥ 1 14 . Dâu bằng xảy ra khi và chỉ khi a = 2b = 3c. 

Suy ra a = 14 , b = 7 , c = 14 3 , vậy phương trình mặt phẳng (P) là x 14 + y 7 + 3 z 14 = 1 ⇔ x + 2 y + 3 z - 14 = 0 .