K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2) Để (d)//(1) thì \(\left\{{}\begin{matrix}2m-1=2\\-5m\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=3\\m\ne\dfrac{-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{2}\)

Vậy: Khi \(m=\dfrac{3}{2}\) thì (d)//(1)

23 tháng 8 2020

d: \(y=\left(5m-3\right)x+4m-3\)

d' :\(y=-4x-1\)     

\(d//d'\Leftrightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\)      

\(\hept{\begin{cases}5m-3=-4\\4m-3\ne-1\end{cases}}\)          

\(\hept{\begin{cases}5m=-4+3\\4m\ne-1+3\end{cases}}\)           

\(\hept{\begin{cases}5m=-1\\4m\ne2\end{cases}}\)                      

\(\hept{\begin{cases}m=-\frac{1}{5}\\m\ne\frac{1}{2}\end{cases}}\)       

\(\Rightarrow m=-\frac{1}{5}\)

23 tháng 8 2020

Alice Bản Quyền bạn nhớ đổi chiếu điều kiện của m nhé.

30 tháng 11 2021

b: Để hai đường thẳng song song thì 5m-3=2m+1

hay m=4/3

Để hàm số y=(2m-3)x-5m+1 là hàm số bậc nhất thì \(2m-3\ne0\)

\(\Leftrightarrow2m\ne3\)

\(\Leftrightarrow m\ne\dfrac{3}{2}\)

a) Để hàm số y=(2m-3)x-5m+1 đồng biến trên R thì \(2m-3>0\)

\(\Leftrightarrow2m>3\)

hay \(m>\dfrac{3}{2}\)

Vậy: Khi hàm số y=(2m-3)x-5m+1 đồng biến trên R thì \(m>\dfrac{3}{2}\)

b) Để đồ thị hàm số y=(2m-3)x-5m+1 song song với đường thẳng y=3x+5 thì \(\left\{{}\begin{matrix}2m-3=3\\-5m+1\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=6\\-5m\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{-4}{5}\end{matrix}\right.\Leftrightarrow m=3\left(nhận\right)\)

Vậy: Để đồ thị hàm số y=(2m-3)x-5m+1 song song với đường thẳng y=3x+5 thì m=3

21 tháng 1 2021

a. Tìm m để hàm số đồng biến.

Để hàm số trên đồng biến. => 2m-3 > 0

                                          <=> 2m > 3

                                          <=> m > 3/2

b. Tìm m để đồ thị hàm số (1) song song đường thẳng y=3x-5 

Để đồ thị hàm số (1)  song song đường thẳng y = 3x - 5 

=>   2m-3 = 3 và -5m+1 khác  - 5

<=> m = 3      và m khác 6/5

<=> m = 3  (tm)

 c. Tính góc tạo bởi đường thẳng y=3x-5 với trục Ox

Gọi góc tạo bởi đường thẳng y=3x-5 với trục Ox là a (a>0)

=> tan a = |3| 

=> tan a = 3

=> góc a = 71o 33'

 

 

 

30 tháng 11 2021

\(\Leftrightarrow\left\{{}\begin{matrix}m-1=2\\2m-3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne2\end{matrix}\right.\Leftrightarrow m=3\)

19 tháng 11 2023

a) Khi m =2 thì y = 3x - 1 

(Bạn tự vẽ tiếp)

b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)

c)

Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)

Giao điểm của 2 đường thẳng thuộc trục tung => x=0

Khi đó, ta có: \(y=-3.0+2=2\)

⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)

⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)

 

23 tháng 12 2023

a: Thay x=2 và y=-3 vào (d), ta được:

\(2\left(2m-1\right)-2m+5=-3\)

=>\(4m-2-2m+5=-3\)

=>2m+3=-3

=>2m=-6

=>\(m=-\dfrac{6}{2}=-3\)

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)

=>m=3/2

Thay m=3/2 vào (d), ta được:

\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)

loading...

y=2x+2 nên a=2

Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

\(tan\alpha=2\)

=>\(\alpha\simeq63^026'\)

27 tháng 9 2023

`x+y-6=0<=>y=-x+6`

Hàm số `y=(4m-5)x+3m //// y=-x+6`

    `<=>{(4m-5=-1),(3m ne 6):}`

   `<=>{(m=1),(m ne 2):}=>m=1`.

11 tháng 12 2021

\(1,\Leftrightarrow m=2m+1\Leftrightarrow m=-1\\ 2,\Leftrightarrow a=-5\)

11 tháng 12 2021

2: a=-5