Dựng hình bình hành ABCD biết: AB = 2cm, AD = 3cm, ∠ A = 110 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích:
Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán.
Qua A kẻ đường thẳng song song với BC cắt CD tại E ta thấy tam giác AED xác định vì biết ba cạnh, ta cần xác định đình B và C.
- Đỉnh C nằm trên tia DE, cách D một khoảng bằng 4cm.
- Đỉnh B nằm trên đường thẳng đi qua A song song với đường thẳng DE và cách A một khoảng bằng lcm.
Cách dựng:
- Dựng ∆ ADE biết AD = 2cm, DE = 3cm, AE = 3cm
- Trên tia DE dựng điểm C sao cho DC = 4cm
- Dựng đường thẳng đi qua A và song song với DC, lấy điểm B sao cho AB = lcm. Nối BC ta có hình thang ABCD cần dựng.
Chứng minh:
Thật vậy, theo cách dựng ta có AB // CD nên tứ giác ABCD là hình thang.
Ta có: AD = 2cm, DC = 4cm, AB= lcm, hình thang ABCE có hai cạnh đáy AB = EC = 1cm nên BC = AE = 3cm.
Hình thang ABCD thỏa mãn điều kiện bài toán.
Biện luận: Tam giác ADB luôn dựng được nên hình thang ABCD dựng được, bài toán có một nghiệm hình.
Cách dựng:
- Dựng ∆ ABD biết AB = 2cm, ∠ A = 80 0 , AD = 3cm
- Dựng ∠ (ABx) = 120 0
- Trên nửa mặt phẳng bờ AD chứa đỉnh B dựng ∠ (ADy) = 60 0 . Dy cắt Bx tại C.
Chứng minh: Thật vậy theo cách dựng:
AB = 2cm, ∠ A = 80 0 , AD = 3cm
∠ B = 120 0
∠ C = 360 0 - ( ∠ A + ∠ B + ∠ C ) = 360 0 - ( 80 0 + 120 0 + 60 0 ) = 100 0
Tứ giác ABCD dựng được thỏa mãn điều kiện bài toán.
hân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán.
Qua A kẻ đường thẳng song song với BC cắt CD tại E ta thấy tam giác AED xác định vì biết ba cạnh, ta cần xác định đỉnh B và C
– Đỉnh C nằm trên tia DE, cách D một khoảng bẳng 4cm
– Đỉnh B nằm trên đường thẳng đi qua A song song với đường thẳng DE và cách A một khoảng bằng 1cm.
Cách dựng:
QUẢNG CÁO
– Dựng ∆ ADE biết AD = 2cm, DE = 3cm, AE = 3cm
– Trên tia DE dựng điểm C sao cho DC = 4cm
– Dựng đường thẳng đi qua A và song song với DC, lấy điểm B sao cho AB = 1cm. Nối BC ta có hình thang ABCD cần dựng
Chứng minh: Thật vậy theo cách dựng ta có AB // CD nên tứ giác ABCD là hình thang.
Ta có: AD = 2cm, DC = 4cm, AB = 1cm, hình thang ABCE có hai cạnh đáy AB = EC = 1cm nên BC = AE = 3cm.
Hình thang ABCD thỏa mãn điều kiện bài toán.
Biện luận: Tam giác ADE luôn dựng được nên hình thang ABCD dựng được, bài toán có một nghiệm hình.
* Dựng hình:
- Dựng tam giác ADC có AD = 2cm, DC = 4cm, CA = 5cm.
- Dựng tia Ax song song với CD.
- Đường tròn (C; 3cm) cắt Ax tại B1 và B2.
Hình thang ABCD với B ≡ B1 hoặc B ≡ B2 là hình thang cần dựng.
* Chứng minh
+ Tứ giác ABCD có AD = 2cm, DC = 4cm, CA = 5cm.
+ Ax // CD ⇒ AB // CD ⇒ ABCD là hình thang.
+ B ∈ (C; 3cm) ⇒ BC = 3cm.
Cách dựng
- Dựng ΔABD có AB = 2cm, ∠A = 110o, AD = 3cm
- Dựng tia Bx //AD
- Dựng tia Dy // AB và Dy cắt Bx tại C
Ta có hình bình hành ABCD cần dựng
Chứng minh
AB //CD, AD // BC nên tứ giác ABCD là hình bình hành.
Ta lại có: AB = 2cm, ∠ A = 110 0 , AD = 3cm.
Bài toán có một nghiệm hình.