Biết S = (a,b) là tập hợp tất cả các giá trị của tham số m để đường thẳng y = m cắt đồ thị hàm số y = | \(x^2-4x+3\) | tại bốn điểm phân biệt . Tìm a + b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d:
Ta khảo sát hàm số (C): y = -x3 + 3x có đồ thị sau như hình bên.
Tìm được nên yêu cầu bài toán
Đáp án B
Phương trình hoành độ giao điểm của (C) và (d) là x 3 − 3 x 2 = m ⇔ x 3 − 3 x 2 − m = 0 *
Để (C) cắt d tại 3 điểm phân biệt khi và chỉ khi (*) có 3 nghiệm phân biệt ⇔ − 4 < m < 0
Khi đó, gọi A x 1 ; m , B x 2 ; m , C x 3 ; m là giao điểm của (C) và d ⇒ A B ¯ = x 2 − x 1 ; 0 B C ¯ = x 3 − x 2 ; 0
Mà B nằm giữa A, C và A B = 2 B C suy ra A B ¯ = 2 B C ¯ ⇔ x 2 − x 1 = 2 x 3 − x 2 ⇔ x 1 + 2 x 3 = 3 x 2
Theo hệ thức Viet cho phương trình (*), ta được x 1 + x 2 + x 3 = 3 ; x 1 x 2 x 3 = m x 1 x 2 + x 2 x 3 + x 3 x 1 = 0
Giải x 1 − 3 x 2 + 2 x 3 = 0 x 1 + x 2 + x 3 = 3 x 1 x 2 + x 2 x 3 + x 3 x 1 = 0 ⇒ x 1 ; x 2 ; x 3 = 1 − 5 7 ; 1 + 1 7 ; 1 + 4 7 x 1 ; x 2 ; x 3 = 1 + 5 7 ; 1 − 1 7 ; 1 − 4 7 ⇒ m = − 98 + 20 7 49 m = − 98 − 20 7 49 ⇒ ∑ m = − 4
Đáp án C
Số giao điểm của đường thẳng y = ( m - 1 ) x và đồ thị hàm số y = x 3 - 3 x 2 + m + 1 là số nghiệm của PT x 3 - 3 x 2 + m + 1 = ( m - 1 ) x ⇔ x 3 - 3 x 2 + x + 1 - m x + m = 0 ⇔ ( x - 1 ) ( x 2 - 2 x - m - 1 ) = 0 để tồn tại ba giao điểm phân biệt thì 1 - 2 - m - 1 ≢ 0 ∆ ' = 1 + m + 1 > 0 ⇔ m ≢ - 2 m > - 2 khi đó tọa độ ba giao điểm là B ( 1 ; m - 1 ) , A ( x 1 ; y 1 ) , C ( x 2 ; y 2 ) hơn nữa x 1 + x 2 2 = 1 y 1 + y 2 2 = ( m - 1 ) x 1 + ( m - 1 ) x 2 2 = ( m - 1 ) ( x 1 + x 2 ) 2 = m - 1
⇒ B là trung điểm AC hay ta có AB=BC