K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 11 2021

Lời giải:

a. Gọi ptđt $AB$ là $y=ax+b$

Ta có: \(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -1=2a+b\\ 3=-5a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{-4}{7}\\ b=\frac{1}{7}\end{matrix}\right.\)

Vậy ptđt $AB$ là $y=\frac{-4}{7}x+\frac{1}{7}$

$M\in Ox$ nên $y_M=0$

$M\in AB$ nên: $y_M=\frac{-4}{7}x_M+\frac{1}{7}$

$\Leftrightarrow 0=\frac{-4}{7}x_M+\frac{1}{7}$

$\Rightarrow x_M=\frac{1}{4}$
Vậy $M(\frac{1}{4}, 0)$

b. Gọi giao điểm của $Oy$ và $AB$ là $(0,a)$.

Do điểm này thuộc $AB$ nên:

$a=\frac{-4}{7}.0+\frac{1}{7}=\frac{1}{7}$

Vậy $(0,\frac{1}{7})$ là giao của $AB$ và trục $Oy$

7 tháng 10 2023

d

13 tháng 10 2023

a) \(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)

b) \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

c) \(A=2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^5+...+2^{58}\right)⋮7\)

13 tháng 10 2023

a) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰

= 2.(1 + 2 + 2² + ... + 2⁵⁸ + 2⁵⁹) 2

Vậy A ⋮ 2

b) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰

= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2⁵⁹.3

= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3

Vậy A ⋮ 3

c) A = 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + ... + 2⁵⁸ + 2⁵⁹ + 2⁶⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy A ⋮ 7

18 tháng 10 2021

a)A=2(1+2+2^2+...+2^19)

   =>A chia hết cho 2

b)A=(2+2^2)+(2^3+2^4)+...+(2^19+2^20)

   A=2(1+2)+2^3(1+2)+...+2^19(1+2)

   A=2.3+2^3.3+...+2^19.3

   A=3(2+2^3+...+2^19)

   =>A chia hết cho 3

c)A=(2+2^3)+(2^2+2^4)+...+(2^18+2^20)

   A=2(1+2^2)+2^2(1+2^2)+...+2^18(1+2^2)

   A=2.5+2^2.5+...+2^18.5

   A=5(2+2^2+...+2^18)

   =>A chia hết cho 5

28 tháng 9 2024

gythgygy

9 tháng 10 2021

nhanh nha đng cần

5 tháng 10 2022

hahâhahâhahâhh làm tưcjccjcj nguyễn tập an ăn cút ahaaaa

 

9 tháng 10 2021
Tui có 4 nick đó
9 tháng 10 2021

NHANH NHA DNG CẦN

MA NÀO GIÚP TUI ĐI

18 tháng 11 2018


 

\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)

\(A=2\cdot3+...+2^{99}\cdot3\)

\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)

2 ý kia tương tự

18 tháng 11 2018

Giải:

Đặt S=(2+2^2+2^3+...+2^100)

=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296

=2.31+26.31+...+296.31

=31.(2+26+...+296)\(⋮\)31

6 tháng 11 2016

dễ thế mà ko có đứa nào trả lời

29 tháng 10 2023

a) \(A=1+2+2^2+...+2^{41}\)

\(2A=2+2^2+...+2^{42}\)

\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)

\(A=2^{42}-1\)

b) \(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)

\(A=3+2^2\cdot3+...+2^{40}\cdot3\)

\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)

Vậy A ⋮ 3

__________

\(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)

\(A=7+...+2^{39}\cdot7\)

\(A=7\cdot\left(1+..+2^{39}\right)\)

Vậy: A ⋮ 7

c) \(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)

\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)

\(A=5\cdot\left(1+2+...+2^{39}\right)\)

A ⋮ 5 nên số dư của A chia cho 5 là 0 

29 tháng 10 2023

Xem lại phần c dòng này nhé a

\(A=\left(1+2^2\right)+\left(2^2+2^4\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)

có 2 số \(2^2\)?

NM
9 tháng 11 2021

ta có :

undefined

undefined

A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5