K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2016

Tui ms học lp 7 ==

1 tháng 1 2017

Có:

a1+a2=a3+a4=...=a2015+a1=1

=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015

Mà 1007+a2015=0

=>a2015=-1007.

=>a1=1--1007

a1=1008.

Chúc học tốt^^

1 tháng 1 2017

Có:

a1+a2=a3+a4=...=a2015+a1=1

=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015

Mà 1007+a2015=0

=>a2015=-1007.

=>a1=1--1007

a1=1008.

Chúc học tốt^^

19 tháng 4 2018

trả lời giúp mình với

19 tháng 11 2021

tra loi giup minh voi 644 chia 14

7 tháng 5 2019

Ta có: x + y = ( a 1 2 +  b 1 ) + ( a 2 2  +  b 2 ) = ( a 1 +  a 2 ) 2  + ( b 1  +  b 2 )

Vì  a 1 ,  a 2 ,  b 1 ,  b 2  là các số hữu tỉ nên  a 1  +  a 2 ,  b 1  +  b 2  cũng là số hữu tỉ.

Lại có: xy = ( a 1 2  +  b 1 )( a 2 2  +  b 2 ) = 2 a 1 a 2  +  a 1 b 2 2  +  a 2 b 1 2  +  b 1 b 2

= ( a 1 b 2  +  a 2 b 1 ) 2  + (2 a 1 a 2  +  b 1 b 2 )

Vì a 1 ,  a 2 ,  b 1 ,  b 2 là các số hữu tỉ nên   a 1 b 2  +  a 2 b 1 ,  a 1 a 2  +  b 1 b 2  cũng là các số hữu tỉ.

17 tháng 4 2015

Đặt S= | a1 + a2 | + |a2 + a3| +  |a3 + a4| + .... + | a(n) + a1 | 

Ta có: S - 2.(a1+a2+...+a(n))= [| a1 + a2 | -(a1+a2)]+ [|a2 + a3| -(a2+a3)]+ [ |a3 + a4|-(a3+a4)] + .... +[ | a(n) + a1 | -(a(n)+a1)]

Mặt khác ta dễ dàng CM được: |A| - A  luôn là một số chẵn nên|a(i)+a(j)|-[a(i)+a(j)] là một số chẵn.

 nên  S - 2.(a1+a2+...+a(n)) là một số chẵn mà 2.(a1+a2+...+a(n)) là một số chẵn =>S là một số chẵn.

So sánh ta thấy S là một số chẵn mà 2015 là một số lẻ.

Vậy không có các số nguyên a(i) thỏa mãn:  | a1 + a2 | + |a2 + a3| +  |a3 + a4| + .... + | a(n) + a1 | = 2015

 

3 tháng 1 2017

làm tính trừ có giống như vầy ko ?

25 tháng 1 2022

\(A_1+A_2+A_3+...+A_{100}=2.2019\). Mà 2.2019 chia hết cho 2

\(\Rightarrow A_1+A_2+A_3+...+A_{100}⋮2\)

\(\Rightarrow A_1.2+A_2.2+A_3.2+...+A_{100}.2\)

\(=2.\left(A_1+A_2+A_3+...+A_{100}\right)⋮2\)

25 tháng 1 2022

=> 2(A1+A2+A3+....+A100)
Mà 2 chia hết cho 2
=> 2(A1+A2+A3+....+A100) chia hết cho 2
=> A1.2+A2.2+A3.2+.…..+A100.2 chia hết cho 2(đpcm)

21 tháng 1 2019