K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

Ta có  f ' x < 0 ∀ x ∈ 0 ; 2 ⇔ 3 x 2 - 4 x - m < 0 ⇔ m > 3 x 2 - 4 x

Xét hàm số g x = 3 x 2 - 4 x  trên khoảng ( 0;2 )

Lập bảng biến thiên, ta suy ra  m ≥ 4

Đáp án D

Với m=1m=−1 thì PT f(x)=0f(x)=0 có nghiệm x=1x=1 (chọn)

Với m1m≠−1 thì f(x)f(x) là đa thức bậc 2 ẩn xx

f(x)=0f(x)=0 có nghiệm khi mà Δ=m22m(m+1)0Δ′=m2−2m(m+1)≥0

m22m0m(m+2)0⇔−m2−2m≥0⇔m(m+2)≤0

2m0⇔−2≤m≤0

Tóm lại để f(x)=0f(x)=0 có nghiệm thì m[2;0]

15 tháng 11 2018

22 tháng 4 2016

ai làm có thưởng 2điem

31 tháng 7 2021

`f'(x) = x^2 - 4x+m`

`f'(x) >=0 <=>x^2-4x+m>=0`

`<=> \Delta' >=0`

`<=> 2^2-1.m>=0`

`<=> m<=4`

Vậy....

NV
26 tháng 1 2022

 \(\Leftrightarrow\left|x^2-4\left|x\right|+2\right|=m\) (1) có 8 nghiệm phân biệt

Đặt \(x^2-4\left|x\right|+2=t\) (2) 

Từ đồ thị của hàm \(y=x^2-4\left|x\right|+2\) ta thấy:

- Với \(t< -2\Rightarrow\) (2) vô nghiệm

- Với \(\left[{}\begin{matrix}t=-2\\t>2\end{matrix}\right.\Rightarrow\) (2) có 2 nghiệm

- Với \(-2< t< 2\Rightarrow\) (2) có 4 nghiệm

- Với \(t=2\Rightarrow\) (2) có 3 nghiệm

Khi đó (1) trở thành: \(\left|t\right|=m\) (3) có tối đa 2 nghiệm

\(\Rightarrow\)Phương trình đã cho có 8 nghiệm pb khi và chỉ khi (3) có 2 nghiệm t phân biệt thỏa mãn \(-2< t< 2\)

\(\Rightarrow0< m< 2\)

Không có phương án nào đúng

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)

 

17 tháng 2 2020

??????