Cho tập hợp X và các mệnh đề:
(I) X ∪ X = X
(II) X ∩ X = X
(III) X ∩ ∅ = ∅
(IV) ∅ ∪ X = ∅
(V) X \ X = X
(VI) ∅ \ X = ∅
(VII) X \ ∅ = ∅
Trong các mệnh đề trên, có bao nhiêu mệnh đề là đúng?
A. 3
B. 4
C. 5
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Nếu x là một phần tử thuộc tập hợp A thì x ∈ A ; x ⊂ A nên các mệnh đề (I) và (IV) đúng.
Chọn D
Xét hàm số .
Có
.
Ta lại có thì . Do đó thì .
thì . Do đó thì .
Từ đó ta có bảng biến thiên của như sau
Dựa vào bảng biến thiên, ta có
I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.
II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.
III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.
IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.
V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.
Vậy có hai mệnh đề đúng.
ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????
Đáp án là C
Câu III sai vì thiếu dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên I
Câu IV sai vì có thể vô số điểm trên I xuất hiện rời rạc thì vẫn có thể nghịch biến trên khoảng I
Chọn A
Đk để hàm số xác định là: . Vậy mệnh đề đúng.
Do hàm số có tập xác định nên không tồn tại do đó đồ thị hàm số này không có đường tiệm cận ngang. Vậy mệnh đề sai.
Do nên đồ thị hàm số có đường tiệm cận đứng là và . Vậy đúng.
Ta có
Do bị đổi dấu qua nên hàm số có một cực trị. Vậy mệnh đề đúng.
Do đó số mệnh đề đúng là .
Hình ảnh trên là một phần đồ thị của y trên tập xác định. Ta thấy rằng hàm số đạt cực đại tại x = 2 nhưng không chắc rằng có còn điểm cực đại nào khác trên những khoảng rộng hơn hay không (I) sai, (III) đúng.
Hàm số không xác định tại x = 1 nên không thể đạt cực tiểu tại điểm này =>(II) sai.
Chọn B
Các mệnh đề đúng là: (I), (II), (III), (VI).
Đáp án B