Chương trình khuyến mại lớn nhất năm: Lì xì đầu xuân - Nhân đôi gói VIP, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hàm số f(x) liên tục trên R và thỏa mãn f - x + 2 f x = cos x . Tính tích phân I = ∫ - π 2 π 2 f x d x
A. I = 1 3
B. I = 2 3
C. I = π
D. I = 2 π
Xét tích phân J = ∫ - π 2 π 2 f - x d x
Đặt: x = -t nên dx = -dt
Đổi cận
x = = - π 2 ⇒ t = π 2 x = π 2 ⇒ t = - π 2
Khi đó
I = ∫ - π 2 π 2 f - t d t = J ⇒ 3 I + 2 I = ∫ - π 2 π 2 f - x + 2 f x d x = ∫ - π 2 π 2 cos x d x = 2
Vậy I = 2 3
Đáp án B
Cho f(x) là hàm số liên tục trên R thỏa mãn f(x) + f'(x) = sinx với mọi x và f(0) = 1. Tính e x f ( π ) .
A. e x - 1 2
B. e x + 1 2
C. e x + 3 2
D. π + 1 2
Chọn C.
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;π/4] thỏa mãn f(0)=0, ∫ 0 π 4 f ' x 2 d x = 2 và ∫ 0 π 4 sin 2 x f ( x ) d x = 1 2 Tích phân ∫ 0 π 4 f x d x bằng
A. -1/2
B. 1/2
C. -1/4
D. 1/4
Cho hàm số f(x) có đạo hàm liên tục trên đoạn 0 ; π thỏa mãn: ∫ 0 π f ' x d x = ∫ 0 π cos x . f x d x = π / 2 và f π / 2 = 1 . Khi đó tích phân ∫ 0 π / 2 f x d x bằng
A.0.
B. .
C. .
D. .
Cho hàm số y = f(x) là hàm số chẵn và liên tục trên đoạn - π ; π thỏa mãn ∫ 0 π f x d x = 2018 . Tích phân ∫ - π π f x 2018 x + 1 d x bằng
A. 2018
B. 4036
C. 0
D. 1 2018
Cho hàm số f(x) có đạo hàm liên tục trên 0 ; π . Biết f 0 = 2 e và f(x) luôn thỏa mãn đẳng thức f ' x + sinx . f x = cosx . e cosx , ∀ x ∈ 0 ; π . Tính I = ∫ 0 π f x dx (làm tròn đến phần trăm).
A. I ≈ 6,55
B. I ≈ 17,30
C. I ≈ 10,31
D. I ≈ 16,91
Cho hàm số y=f(x) liên tục trên đoạn [0;π/3].Biết f’(x).cosx+f(x).sinx=1, x ϵ [0;π/3] và f(0)=1. Tính tích phân I = ∫ 0 π 3 f x d x
A. 1/2 + π/3
B. 3 + 1 2
C. 3 - 1 2
D. 1/2
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;π/4] thỏa mãn f π 4 = 3 , ∫ 0 π 4 f x cos x d x = 1 và ∫ 0 π 4 sin x . tan x . f x d x = 2 Tích phân ∫ 0 π 4 sin x f ' x d x bằng
A. 4.
B. 2 + 3 2 2
C. 1 + 3 2 2
D. 6.
Chọn đáp án B.
Cho hàm số y = f(x) liên tục và có đạo hàm trên R thỏa mãn f(2) = -2; ∫ 0 2 f ( x ) d x = 1 Tính tích phân I = ∫ 0 4 f ' ( x ) d x
A. I = -10
B. I = -5
C. I = 0
D. I = -18
Cho hàm số f(x) xác định, liên tục trên [0;π/2] thỏa mãn điều kiện:
∫ 0 π 2 f 2 x + 2 2 f x cos x + π 4 d x = 2 - π 2
Tích phân ∫ 0 π 2 f x d x bằng
A. π/2
B. 0.
C. 1.
D. π/4
Biết f(x) là hàm số liên tục trên ℝ , a là số thực thỏa mãn 0 < a < π và ∫ 0 a f ( x ) d x = ∫ 0 π f ( x ) d x = 1 . Tính tích phân ∫ 0 π f x d x bằng:
A. 0
B. 2
C. 1 2
D. 1
Chọn B.
Xét tích phân J = ∫ - π 2 π 2 f - x d x
Đặt: x = -t nên dx = -dt
Đổi cận
x = = - π 2 ⇒ t = π 2 x = π 2 ⇒ t = - π 2
Khi đó
I = ∫ - π 2 π 2 f - t d t = J ⇒ 3 I + 2 I = ∫ - π 2 π 2 f - x + 2 f x d x = ∫ - π 2 π 2 cos x d x = 2
Vậy I = 2 3
Đáp án B