K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét 2 tứ diện A'ABD và CC'D'B'

Dùng phép đối xứng qua tâm O của hình hộp

Ta có:

A' đối xứng C qua O

A đối xứng C' qua O

B đối xứng D' qua O

D đối xứng B' qua O

Suy ra tứ diện A'ABD bằng tứ diện CC'D'B'.

Tham khảo:

Xét 2 tứ diện A’ABD và CC’D’B’

Dùng phép đối xứng qua tâm O của hình hộp

Ta có:

A’ đối xứng C qua O

A đối xứng C’ qua O

B đối xứng D’ qua O

D đối xứng B’ qua O

Suy ra tứ diện A’ABD bằng tứ diện CC’D’B’.

21 tháng 9 2019

Đáp án B

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

+) Vì hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau nên tứ giác A'B'C'D'; ADD'A'; CC'D'D là hình thoi.

+) AB' // C'D và C'D \( \bot \) CD' nên AB' \( \bot \)CD'

+) AC // A'C' và A'C' \( \bot \) B'D' nên AC \( \bot \) B'D'

+) B'C // A'D và A'D \( \bot \) AD' nên B'C \( \bot \) AD'

Vậy ta đã chứng minh được rằng tứ diện ACB'D' có các cặp cạnh đối diện vuông góc với nhau.

20 tháng 5 2017

Khối đa diện

14 tháng 4 2017

Giải bài 10 trang 132 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) ABCD.A’B’C’D’ là hình hộp chữ nhật

⇒ AA’ // CC’, AA’ = CC’

⇒ AA’C’C là hình bình hành

Lại có : AA’ ⊥ (ABCD) ⇒ AA’ ⊥ AC ⇒ Giải bài 10 trang 13<sup>2</sup> SGK Toán 8 Tập <sup>2</sup> | Giải toán lớp 8

⇒ Hình bình hành AA’C’C là hình chữ nhật.

Chứng minh tương tự được tứ giác BDD'B' là những hình chữ nhật

b) Áp dụng định lý Pytago:

Trong tam giác vuông ACC’ ta có:

      AC’2 = AC2 + CC’2 = AC2 + AA’2

Trong tam giác vuông ABC ta có:

      AC2 = AB2 + BC2 = AB2 + AD2

Do đó: AC’2 =AB2 + AD2 + AA’2.

c) Hình hộp chữ nhật được xem như hình lăng trụ đứng.

Diện tích xung quanh:

Sxq = 2.(AB + AD).AA’

        = 2.(12 + 16).25

        = 1400 (cm2 )

Diện tích một đáy:

Sđ = AB.AD

      = 12.16

      = 192 (cm2 )

Diện tích toàn phần:

Stp = Sxq + 2Sđ

      = 1400 + 2.192

      = 1784 (cm2 )

Thể tích:

V = AB.AD.AA’

    = 12.16.25

    = 4800 (cm3 )

31 tháng 3 2017

Lời giải:

a) Tứ giác DBB'D' là hình bình hành nên  BD // B'D' . Vì vậy BD // (B'D'C) và BA' // CD' \(\Rightarrow\) BA' // ( B'D'C).

Từ đó suy ra ( BDA') //B'D'C).

b) Gọi {G_{1}}^{}, {G_{2}}^{} là giao điểm của AC' với A'O và CO'.
Do \(G_1=A'O\cap AI\) và A'O và AI là hai đường trung tuyến của tam giác nên \(G_1\) là trọng tâm của tam giác A'AC.
Chứng minh tương tự \(G_2\) là trọng tâm tam giác CAC'.
Suy ra \(\dfrac{AG_1}{AO}=\dfrac{2}{3}\)\(\dfrac{CG_2}{CO}=\dfrac{2}{3}\) nên đường chéo AC'  đi qua trọng tâm của hai tam giác BDA' và B'D'C.

c) Do O và O' lần lượt là trung điểm của AC và A'C' nên \(OC=A'O'\) và OC' // A'O'.
Vì vậy tứ giác OCO'A là hình bình hành và OA'//OC.
Từ đó ta chứng minh được \(G_1\) lần lượt là trung điểm của \(AG_1\) và \(G_2\) là trung điểm của \(G_1C'\).
Do đó: \(AG_1=G_1G_2=G_2C\) (đpcm).
d) \(\left(A'IO\right)=\left(AA'C'C\right)\). Nên thiết diện cần tìm là (AA'C'C).
 

31 tháng 3 2017

d) (A'IO) ≡ (AA'C'C) suy ra thiết diện là AA'C'C

23 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ giả thiết suy ra tứ giác ABCD là hình thoi, do đó AC ⊥ BD

Dễ thấy mặt chéo BDD'B' của hình hộp đã cho là hình bình hành, do đó BD // B′D′. Từ đó, theo bài 3.12 suy ra AC ⊥ B'D'.

26 tháng 4 2017

Đáp án A