Tính giới hạn l i m 1 + a + a 2 + . . . + a n 1 + b + b 2 + . . + b n (với a < 1 ; b < 1 )
A. 1 - a 1 - b
B. 1 - b 1 - a
C. 1 + a 1 + b
D. 1 + b 1 + a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I=\lim\limits\dfrac{1+a+a^2+...+a^n}{1+b+b^2+...+b^n}\)
Xet tren tu la 1 csc voi : \(\left\{{}\begin{matrix}u_1=1\\q=a\end{matrix}\right.\Rightarrow S_a=1.\dfrac{a^{n+1}-1}{a-1}\)
Tuong tu cho mau so: \(S_b=1.\dfrac{b^{n+1}-1}{b-1}\)
\(\Rightarrow.....=\lim\limits\dfrac{\dfrac{a^{n+1}-1}{a-1}}{\dfrac{b^{n+1}-1}{b-1}}=\dfrac{\dfrac{1}{a-1}}{\dfrac{1}{b-1}}=\dfrac{1-b}{1-a}\)
\(\lim\limits_{x\rightarrow+\infty}\left(ax-\sqrt{bx^2-2x+2018}\right)=\lim\limits_{x\rightarrow+\infty}x.\lim\limits_{x\rightarrow+\infty}\left(a-\sqrt{b}\right)=\pm\infty\)
Còn tuỳ vào độ lớn của a và b
Đúng là giá trị giới hạn còn phụ thuộc vào giá trị của $a,b$ mới có thể khẳng định nhưng dòng công thức bạn viết ở trên chưa đúng đâu nhé.
Câu 1: đoạn thẳng có đặc điểm nào trong các điểm sau
A giới hạn ở 1 đầu.
B kéo dài mãi về 1 phía
C giới hạn ở 2 đầu
D kéo dài mãi về 2 phía
Câu 2: Trong các cách viết sau cách nào sử dụng sai kí hiệu
A .m ∉ A
B .a ∈ b
C .N ∉ xy
D.m ∈ a
Do \(x< 2\) nên x chỉ tiến tới 2 từ phía trái
Do đó hàm số chỉ có giới hạn trái tại điểm x=2 (giới hạn bằng dương vô cực)
Ta có
1 + a + a 2 + . . + a n = 1 - a n + 1 1 - a 1 + b + b 2 + . . + b n = 1 - b n + 1 1 - b
Khi đó 1 + a + a 2 + . . . + a n 1 + b + b 2 + . . + b n = 1 - b 1 - a . 1 - a n + 1 1 - b n + 1
Do a < 1 ; b < 1 nên l i m a n + 1 = 0 ; l i m b n + 1 = 0
Vậy 1 + a + a 2 + . . . + a n 1 + b + b 2 + . . + b n = 1 - b 1 - a
Đáp án B