Tính hợp lí: B = 3 4 + 3 28 + 3 70 + 3 130 + 3 208 + 3 304
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
\(\Rightarrow B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\)
\(\Rightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}\)
\(\Rightarrow B=1-\frac{1}{19}=\frac{18}{19}\)
Vậy \(B=\frac{18}{19}\)
Chúc bn học tốt
B = \(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
= \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{13}-\frac{1}{16}\)
= \(1-\frac{1}{16}\)
= \(\frac{15}{16}\)
\(\dfrac{3}{4}+\dfrac{3}{28}+\dfrac{3}{70}+\dfrac{3}{130}+\dfrac{3}{208}+\dfrac{3}{304}\\ =\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+\dfrac{3}{13.16}+\dfrac{3}{16.19}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{19}\\ =1-\dfrac{1}{19}=\dfrac{18}{19}\)
\(\dfrac{3}{4}+\dfrac{3}{28}+\dfrac{3}{70}+\dfrac{3}{130}+\dfrac{3}{208}+\dfrac{3}{304}\)
\(=\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+\dfrac{3}{10\times13}+\dfrac{3}{13\times16}+\dfrac{3}{16\times19}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{19}\)
\(=1-\dfrac{1}{19}\)
=\(\dfrac{18}{19}\)
A=\(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
A= \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\)
A= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}\)
A= 1 - \(\frac{1}{19}\)
A= \(\frac{18}{19}\)
X=3/4+3/28+...+3/304
X=3/1x4+3/4x7+....+3/13x16
X=1-1/4+1/4-1/7+....+1/13-1/16
X=1-1/16
X=15/16
k cho tớ nha Nguyễn Thu Trang
\(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+....+\frac{3}{304}.\)
\(=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+.....+\frac{3}{16.19}\)
\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+\frac{13-10}{10.13}+.....+\frac{19-16}{16.19}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{16}-\frac{1}{19}\)
\(=1-\frac{1}{19}=\frac{18}{19}\)
3/4+3/28+3/70+3/130+...+3/304
= 3 /1.4 + 3/4.7 + 3/7.10 + 3/10.13 +....+ 3 /16.19
= 1 -1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + ...+1/16 - 1/19
= 1 - 1/19
=18/19
Ta có:
\(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}\)
\(=\frac{3}{1\times4}+\frac{3}{4\times7}+\frac{3}{7\times10}+\frac{3}{10\times13}+\frac{3}{13\times16}\)
\(=\frac{4-1}{1\times4}+\frac{7-4}{4\times7}+\frac{10-7}{7\times10}+\frac{13-10}{10\times13}+\frac{16-13}{13\times16}\) \(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)
\(=1-\frac{1}{16}\)
\(=\frac{15}{16}\)
Chắc chắn đúng nhé !
b) D = \(\frac{3}{4}+\frac{3}{8}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
D = \(3\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{208}+\frac{1}{304}\right)\)
D = \(3\left(\frac{1}{1x4}+\frac{1}{4x7}+\frac{1}{7x10}+\frac{1}{10x13}+\frac{1}{13x16}+\frac{1}{16x19}\right)\)
D = \(\frac{1}{1}-\frac{1}{19}=\frac{18}{19}\)
Chắc vậy
a) \(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}+\frac{3}{418}+\frac{3}{550}\)
= \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+\frac{3}{19.22}+\frac{3}{22.25}\)
= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+\frac{1}{19}-\frac{1}{22}+\frac{1}{22}-\frac{1}{25}\)
= \(\frac{1}{1}-\frac{1}{25}\)
= \(\frac{24}{25}\)
b) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n+1\right).\left(2n+3\right)}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)
= \(\frac{1}{1}-\frac{1}{2n+3}\)
= \(\frac{2n+2}{2n+3}\)
c) \(\frac{7+\frac{7}{13}-\frac{7}{48}+\frac{7}{95}}{15+\frac{15}{13}-\frac{15}{48}+\frac{15}{95}}-\frac{7070707}{15151515}\)
= \(\frac{7\left(1+\frac{1}{13}-\frac{1}{48}+\frac{1}{95}\right)}{15\left(1+\frac{1}{13}-\frac{1}{48}+\frac{1}{95}\right)}-\frac{7.1010101}{15.1010101}\)
= \(\frac{7}{15}-\frac{7}{15}\)
= 0
A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
B = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
B = 3 1.4 + 3 4.7 + 3 7.10 + 3 10.13 + 3 13.16 + 3 16.19
= 1 − 1 4 + 1 4 − 1 7 + 1 7 − 1 10 + 1 10 − 1 13 + 1 13 − 1 16 + 1 16 − 1 19 = 18 19