Cho log 2 x 2 + y 2 = 1 + log 2 x y x y > 0 Chọn khẳng định đúng trong các khẳng định sau ?
A. x > y
B. x = y
C. x < y
D. x = y 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số a,b là các hàm số logarit
a: \(log_{\sqrt{3}}x\)
Cơ số là \(\sqrt{3}\)
b: \(log_{2^{-2}}x\)
Cơ số là \(2^{-2}=\dfrac{1}{4}\)
Ta có: y(0) = 0-1= - 1
Và y(-2) = -2 – 1 = - 3
*Xét tính liên tục của hàm số tại x=1
lim x → 1 + y = lim x → 1 + x 2 + 3 x + 1 x − 1 = + ∞ x → 1 + : x − 1 > 0 ; lim x → 1 + ( x − 1 ) = 0 lim x → 1 + ( x 2 + 3 x + 1 ) = 5 > 0
Và lim x → 1 − y = lim x → 1 − ( x − 1 ) = 0
⇒ lim x → 1 + y ≠ lim x → 1 − y
Do đó, hàm số đã cho không liên tục tại x =1
Suy ra, hàm số cũng không có đạo hàm tại x = 1
Chọn D.
Ta có:
Chọn B