K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

SAMN=1/4SABC SIMN=1/3SAMN

=>SAMIN =1/3SABC=90:3=30  c m 2

6 tháng 1 2018

a) Học sinh tự làm

b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N  

hay E là trung điểm MN.

c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình  hành; Mặt khác BM ^ NC (do AB ^ AC)

Suy ra EHFG là hình chữ nhật

Xét ΔABC có M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{1}{2}BC\)

Xét ΔOMN và ΔOCB có

\(\widehat{OMN}=\widehat{OCB}\)(hai góc so le trong, NM//BC)

\(\widehat{MON}=\widehat{COB}\)(hai góc đối đỉnh)

Do đó: ΔOMN~ΔOCB

=>\(\dfrac{MN}{CB}=\dfrac{ON}{OB}=\dfrac{1}{2}\)

Ta có \(AN=\dfrac{1}{2}AC\)

=>\(S_{ABN}=\dfrac{1}{2}\cdot S_{ABC}=66\left(m^2\right)\)

Ta có: M là trung điểm của AB

=>\(S_{BMN}=\dfrac{1}{2}\cdot S_{BNA}=\dfrac{1}{2}\cdot66=33\left(cm^2\right)\)

\(\dfrac{ON}{OB}=\dfrac{1}{2}\)

=>\(\dfrac{OB}{ON}=2\)

=>\(\dfrac{OB+ON}{ON}=2+1=3\)

=>\(\dfrac{BN}{ON}=3\)

=>\(\dfrac{ON}{BN}=\dfrac{1}{3}\)

=>\(S_{MON}=\dfrac{1}{2}\cdot S_{MNB}=\dfrac{1}{2}\cdot33=16,5\left(cm^2\right)\)

Nối A với I :

Ta có : S ( AMI ) = 1/2 S ( BMI ) ( vì đáy AM = 1/2 đáy BM ; chung chiều cao hạ từ I xuống AB )

S ( ANI ) = 1/2 S ( CNI )

Mà S ( CNI ) = S ( BMI ) nên S ( AMI ) = S ( ANI ) = 90 : 2 = 45 cm2

\(\Rightarrow\) S ( AIB ) = 3 x S ( AMI ) = 3 x 45 = 135 cm2

\(\Rightarrow\) S ( ABN ) = S ( AIB ) + S ( AIN ) = 135 + 45 = 180 cm2

\(\Rightarrow\) S ( ABC ) = 3 x S ( ABN ) = 3 x 180 = 540 cm2