cho tam giác ABC vuông tại A, 1 đường thẳng cắt 2 cạnh AB,AC ở D và E . Chứng minh CD bình phương - Cb bình phương = ED bình phương - EB bình phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn áp dụng định lí pitago vào.
\(CD^2-CB^2=\left(AC^2+AD^2\right)-\left(AB^2+AC^2\right)=AD^2-AB^2\)
\(ED^2-EB^2=\left(AD^2+AE^2\right)-\left(AB^2+AE^2\right)=AD^2-AB^2\)
Vậy \(CD^2-CB^2=ED^2-EB^2\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b) Xét tứ giác ADHE có
\(\widehat{EAD}=90^0\)
\(\widehat{AEH}=90^0\)
\(\widehat{ADH}=90^0\)
Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=DE(hai đường chéo)(3)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)(4)
Từ (3) và (4) suy ra \(DE^2=HB\cdot HC\)
Bạn ơi đề thiếu hay sao ấy
Phải là :
BD2 - CD2 = ?
Sửa đi mik giải cho
bấm vào chữ Đúng 0 sẽ hiện ra kết quả