Hypebol có nửa trục thực là 4, tiêu cự bằng 10 có phương trình chính tắc là:
A.
B.
C.
D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2c = 10 \Rightarrow c = 5,2b = 6 \Rightarrow b = 3\)
Suy ra \(a = \sqrt {{c^2} - {b^2}} = \sqrt {{5^2} - {3^2}} = 4\)
Vậy phương trình chính tắc của hypebol có dạng \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)
a) Ta có \(2a = 20 \Rightarrow a = 10,2b = 16 \Rightarrow b = 8\).
Vậy phương trình chính tắc của elip có dạng \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)
b) Ta có \(2a = 12 \Rightarrow a = 6,2c = 20 \Rightarrow c = 10\), suy ra \(b = \sqrt {{c^2} - {a^2}} = \sqrt {{{10}^2} - {6^2}} = 8\)
Vậy phương trình chính tắc của hypebol có dạng \(\frac{{{x^2}}}{{36}} - \frac{{{y^2}}}{{64}} = 1\)
c) Ta có tiêu điểm \(F\left( {\frac{1}{2};0} \right)\).
Do đó, \(\frac{p}{2} = \frac{1}{2}\) suy ra \(p = 1\).
Vậy phương trình chính tắc của parabol là \({y^2} = 2x\).
Chọn A
Ta có 2 c = 12 2 a = 10 b 2 = c 2 - a 2 ⇒ c = 6 a = 5 b 2 = 11
Phương trình chính tắc (H) x 2 25 - y 2 11 = 1
Đáp án: D
Ta có:
2a = 8 ⇒ a = 4
2c = 6 ⇒ c = 3
Mà b 2 = a 2 - c 2 = 16 - 9 = 7
Suy ra, phương trình elip cần tìm là:
Ta có độ dài trục lớn bằng 8 nên 2a = 8 => a = 4
Độ dài tiêu cự bằng 6 nên 2c = 6 ⇒ c = 3
Đáp án D
Chọn B
Ta có a = 4 2 c = 10 b 2 = c 2 - a 2 ⇒ a = 4 c = 5 b = 3
Phương trình chính tắc của Hyperbol là