K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

Ta có tính chất: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.

Khi đó ta có:Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án ⇒ BC = B'C' = 22 - 8 - 4 = 10( cm )

Chọn đáp án D.

13 tháng 12 2018

Ta có tính chất: Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.

Khi đó ta có:

Bài tập: Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ BC = B'C' = 22 - 8 - 4 = 10( cm )

Chọn đáp án D.

29 tháng 4 2018

a)   Ta có:   \(\frac{4}{8}=\frac{5}{10}=\frac{6}{12}\left(=\frac{1}{2}\right)\)

hay   \(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}\)

\(\Rightarrow\)\(\Delta A'B'C'~\Delta ABC\) 

b)   \(\Delta A'B'C'~\Delta ABC\)

\(\Rightarrow\)\(\frac{P_{A'B'C'}}{P_{ABC}}=\frac{A'B'}{AB}=\frac{8}{4}=2\)

Xin chào các bạn !!!
Hãy Đăng Kí Cho Channel Kaito1412_TV Để nhé !

Link là : https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Vì tam giác \(ABC\) đồng dạng với tam giác \(A'B'C'\) nên tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Do đó, \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Thay số, \(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6}\). Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6} = \frac{{A'B' + B'C' + A'C'}}{{4 + 6 + 9}} = \frac{{66,5}}{{19}} = 3,5\)

Ta có:

\(\left\{ \begin{array}{l}\frac{{A'B'}}{4} = 3,5 \Rightarrow A'B' = 3,5.4 = 14\\\frac{{A'C'}}{6} = 3,5 \Rightarrow A'C' = 3,5.6 = 21\\\frac{{B'C'}}{9} = 3,5 \Rightarrow B'C' = 3,5.9 = 31,5\end{array} \right.\)

Vậy \(A'B' = 14cm,A'C' = 21cm,B'C' = 31,5cm\).

28 tháng 2 2018

+) Trong tam giác vuông A’B’C’ có \(\widehat{A'}=90^0\)

Áp dụng định lí Pi-ta-go, ta có:

A′B′2+A′C′2 =B′C′2

=> A′C′2=B′C′2−A′B′2=152−92=144

=> A’C’ =12 (cm)

Trong tam giác vuông ABC có \(\widehat{A}=90^0\)

Áp dụng định lí Pi-ta-go, ta có:

BC2=AB2+AC2= 62+82=100

Suy ra: BC = 10 (cm)

Ta có: \(\dfrac{A'B'}{AB}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\dfrac{A'C'}{AC}=\dfrac{12}{8}=\dfrac{3}{2}\)

\(\dfrac{B'C'}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)

Suy ra: \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=\dfrac{3}{2}\)

Vậy ∆ A’B’C’ đồng dạng với ∆ ABC

19 tháng 3 2020

vì tam giác ABC đồng dạng với tam giác A'B'C' =>AB/A'B'=BC/B'C'=AC/A'C'

=>BC/B'C'=6/8=3/4=>BC=3.10/4=15/2(cm)

ta lại có AC/A'C'=3/4

=>A'C'/4=AC/3=3/1=3

=>AC=9cm=>A'C'=12(cm)

Vậy BC=15/2 cm ,AC=9cm,A'C'=12cm