Cho hàm số y = f(x) xác định trên R và lim x → ∞ f x = a , lim x → x 0 f x = b . Tiệm cận ngang của đồ thị hàm số đã cho là đường thẳng
A. x = b
B. y = b
C. x = a
D. y = a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Nếu l i m x → + ∞ y = a hoặc l i m x → - ∞ y = a thì y = a là TCN của đồ thị hàm số y = f(x)
Nếu l i m x → b + y = ∞ hoặc l i m x → b - y = ∞ thì x = b là TCĐ của đồ thị hàm số y = f(x)
Cách giải: Do hàm số liên tục trên R nên đồ thị hàm số không có TCĐ.
l i m x → - ∞ f ( x ) = 0 ; l i m x → + ∞ f ( x ) = 1 → y = 0 và y = 1 là 2 đường TCN của đồ thị hàm số.
Đáp án D
lim x → ∞ f ( x ) = a ⇒ y = a là TCN của đồ thị hàm số