K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Chọn B.

Ta có A = 4x + 3.2-x - 1

Bài 1. Tính giá trị các lũy thừa sau: c) 53 d) 20200 e) 43 f) 12020 Bài 2. Viết kết quả các phép tính sau dưới dạng một lũy thừa: a) b) c) d) 18 12 3 :3 e) 15 15 4 .5 f) 3 3 16 :8 g) 8 4 4 .8 h) 3 2 3 .9 i) 5 2 27 . 3 . k) 4 4 12 12 24 :3 32 :16  m) 12 11 5 .7 5 .10  n) 10 10 2 .43 2 .85  Bài 3. Tính giá trị của biểu thức:    2 A 150 30: 6 2 .5;      2 B 150 30 : 6 2 .5;      2 C 150 30: 6 2 .5;    ...
Đọc tiếp

Bài 1. Tính giá trị các lũy thừa sau: c) 53 d) 20200 e) 43 f) 12020 Bài 2. Viết kết quả các phép tính sau dưới dạng một lũy thừa: a) b) c) d) 18 12 3 :3 e) 15 15 4 .5 f) 3 3 16 :8 g) 8 4 4 .8 h) 3 2 3 .9 i) 5 2 27 . 3 . k) 4 4 12 12 24 :3 32 :16  m) 12 11 5 .7 5 .10  n) 10 10 2 .43 2 .85  Bài 3. Tính giá trị của biểu thức:    2 A 150 30: 6 2 .5;      2 B 150 30 : 6 2 .5;      2 C 150 30: 6 2 .5;      2 D 150 30 : 6 2 .5. Bài 4. Tìm số tự nhiên x biết: a) (x-6)2 = 9 b) (x-2)2 =25   3 c) 2x - 2 = 8 d) ( e) ( f) 2 (x 1) 4   g) ( h) ( i) ( k) ( m) ( n) ( Bài 5. Tìm số tự nhiên x biết: a) 2x = 32 b) 2 .4 128 x  c) 2x – 15 = 17 d) 5x+1=125 e) 3.5x – 8 = 367 f) 3.2 18 30 x   g) 5 2x+3 -2.52 =52 .3 h) 2.3x = 10. 312+ 8.274 i) 5x-2 - 3 2 = 24 - (68 : 66 - 6 2 ) k) m) n) Bài 6. Tính giá trị của các biểu thức sau: a) 9 12 . 19 – 3 24 . 19 b) 165 . 23 – 2 18 .5 – 8 6 . 7 c) 212. 11 – 8 4 . 6 – 163 .5 d)12 . 52 + 15 . 62 + 33 .2 .5 e) 34 . 15 + 45. 70 + 33 . 5 Bài 7. Thu gọn các biểu thức sau: a) A= 1+2+22 +23 +24 +....+299+2100 b) B= 5+53 +55 +...+597+599

8
7 tháng 10 2021

thu gọn 7^3*7^5

16 tháng 8 2023

cặk cặk

20 tháng 7 2021

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Bài 3:

\(C=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{-\left(x^2-3x+9\right)}\)

\(=\dfrac{-3}{x-3}\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

NM
26 tháng 7 2021

\(B=8x^2+2x-8x^3-8x^2+8x^3-2x+3=3\)

\(C=x^3-3x^2+3x-1+x^3+3x^2+3x+1+2x^3-8x=4x^3-2x\)

\(D=\left(x+y-5\right)^2-2\left(x+y-5\right)\left(x+3\right)+\left(x+3\right)^2=\left(x+y-5-x-3\right)^2=\left(y-8\right)^2\)

câu 2. ta có 

a.\(\left(x-y\right)^2=\left(x+y\right)^2-4xy=7^2-4\times12=1\)

b.\(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)=3\left(x+y\right)^2-6xy-2\left(x+y\right)^3+6xy\left(x+y\right)=3-6xy-2+6xy=1\)