tìm số tự nhiên bé nhất sao cho số đó chia 2 dư 1 chia 5 dư 1 chia 7 dư 3 va chia het cho 9 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a ( a thuộc N )
Vì a chia 5 dư 1 => a + 4 ⋮ 5 ( 1 )
a chia 7 dư 3 => a + 4 ⋮ 7 ( 2 )
a chia 9 dư 5 => a + 4 ⋮ 9 ( 3 )
a là số tự nhiên nhỏ nhất ( 4 )
Từ ( 1 ) ; ( 2 ) ; ( 3 ) ; ( 4 ) => a + 4 thuộc [ 5 ; 7 ; 9 ] = 315
=> a + 4 = 315 => a = 311
Vậy số cần tìm là 311
Gọi số cần tìm là a ( a thuộc N )
Vì a chia 5 dư 1 => a + 4 ⋮ 5 ( 1 )
a chia 7 dư 3 => a + 4 ⋮ 7 ( 2 )
a chia 9 dư 5 => a + 4 ⋮ 9 ( 3 )
a là số tự nhiên nhỏ nhất ( 4 )
Từ ( 1 ) ; ( 2 ) ; ( 3 ) ; ( 4 ) => a + 4 thuộc [ 5 ; 7 ; 9 ] = 315
=> a + 4 = 315 => a = 311
Vậy số cần tìm là 311
mk nha cac ban
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
ta có thể áp dụng phương pháp tìm kiếm thông qua vòng lặp.
Bước 1: Bắt đầu từ số 1, kiểm tra từng số tự nhiên lớn hơn 1 cho đến khi tìm được số thỏa mãn tất cả các điều kiện.
Bước 2: Dùng toán tử % để kiểm tra xem số đó có chia hết cho 5 dư 2 hay không. Nếu không thỏa mãn, ta tiếp tục tăng số lên 1 và kiểm tra tiếp.
Bước 3: Kiểm tra xem số đó có chia hết cho 4 dư 3 hay không. Nếu không thỏa mãn, ta tiếp tục tăng số lên 1 và kiểm tra tiếp.
Bước 4: Kiểm tra xem số đó có chia hết cho 5 hay không. Nếu không thỏa mãn, ta tiếp tục tăng số lên 1 và kiểm tra tiếp.
Bước 5: Kiểm tra xem số đó có chia hết cho 7 dư 6 hay không. Nếu không thỏa mãn, ta tiếp tục tăng số lên 1 và kiểm tra tiếp.
Bước 6: Khi tìm được số thỏa mãn tất cả các điều kiện, ta kết thúc vòng lặp và số đó là số tự nhiên bé nhất cần tìm.
Với các điều kiện đã cho, số tự nhiên bé nhất thỏa mãn là 122, vì 122 chia 5 dư 2, chia 4 dư 3, chia 5 dư 4 và chia 7 dư 6.
Số chia hết cho 2 dư 1 là số lẻ
Số chia 5 dư 1 có chữ số hàng đơn vị là 1 hoặc 6
=> số chia 2 và 5 dư 1 có chữ số tận cùng là 1
Gọi số cần tìm là \(\overline{A1}\Rightarrow\overline{A1}⋮9\Rightarrow A=8\)
Số nhỏ nhất thoả mãn đề bài là 81
3: \(\left\{{}\begin{matrix}a-1\in\left\{15;30;45;...\right\}\\a-3\in\left\{4;8;12;...\right\}\end{matrix}\right.\Leftrightarrow a=31\)
Gọi số cần tìm là A
A= 5a+3 =7b+4=9c+5
2A=10a+6=14b+8 = 18c+10
2A-1 = 5(2a+1) =7(2b+1) =9(2c+1)
vậy 2A-1 là BSCNN của 5;7;9 --> 2A-1 =5.7.9 =315 --> A= 158
2) Gọi số cần tìm la; x
Khi đó x + 1 chia hết 2;3;4
+. x + 1 Thuộc BCNN(2;3;4)
=> x + 1 = 12
=> x = 11
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.