Một mảnh đất hình chữ nhật có độ dài đường chéo là 13m và chiều dài lớn hơn chiều rộng là 7m. Tính chiều dài của mảnh đất đó.
A. 5m
B. 8m
C. 12m
D. 10m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là chiều dài và chiều rộng của HCN = x - 7
Theo định lí Pi-ta-go, ta có :
\(13^2=(x-7)^2+x^2\)
\(\Leftrightarrow169=x^2-14x+49+x^2\)
\(\Leftrightarrow120=2x^2-14x\)
\(\Leftrightarrow2x^2-14x-120=0\)
Rồi còn lại bạn tự làm nốt
Gọi chiều dài , chiều rộng lần lượt là : x,y
Ta có : x2 + y2 = 132 = 169 (áp dụng pi ta go)
Lại có : x - y = 7
<=> (x - y)2 = 72
<=> x2 - 2xy + y2 = 49
Nên : x2 + y2 - (x2 - 2xy + y2) = 169 - 49
<=> x2 + y2 - x2 + 2xy - y2 = 120
<=> 2xy = 120
<=> xy = 60
<=> x(x - 7) = 60
<=> x2 - 7x - 60 = 0
<=> x2 - 12x + 5x - 60 = 0
<=> x(x - 12) + 5(x - 12) = 0
<=> (x - 12)(x + 5) = 0
<=> \(\orbr{\begin{cases}x-12=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=-5\left(loại\right)\end{cases}}\)
<=> x = 12
=> y = 12 - 7 = 5
Vậy chiều dài là : 12 m ; chiều rộng 5 m
gọi x là chiều dài của HCN —» chiều rộng HCN = x - 7
Theo Định lý pitago ta có :
13² = (x - 7 )² + x²
<=> 169 = x² - 14x + 49 + x²
<=> 120 = 2x² - 14x
<=> 2x² - 14x - 120 = 0
bấm máy dc : x= -5 ( loại khoảng cách không âm ) va x = 12 (nhận) suy ra chiều rộng bằng 12 - 7 = 5m
Vậy chiều dài bằng 12 và chiều rộng bằng 5
Gọi 3 chiều dài lần lượt là a,b,c ( thuộc N sao, chắc thế ) (m)
Có chiều dài của mảnh đất có chiều rộng ngắn nhất hơn chiều dài của mảnh đất có chiều rộng lớn nhất là 14m
>> a-c = 14(m)
Nhận xét: Trong cùng 1 hình chữ nhật thì chiều dài và chiểu rộng là hai đại lượng tỉ lệ nghịch mà chiều rộng lần lượt là 5m, 7m ,10m
>> a.5=b.7=c.10>> \(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{7}}=\frac{c}{\frac{1}{10}}\). Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{7}}=\frac{c}{\frac{1}{10}}=\frac{a-c}{\frac{1}{5}-\frac{1}{10}}=\frac{14}{\frac{1}{10}}=140\)
suy ra \(\hept{\begin{cases}a=28\left(m\right)\\b=20\left(m\right)\\c=14\left(m\right)\end{cases}\left(TM\right)}\) >>>> Diện tích mỗi mảnh đất nhỏ là 28.5=140 >>> Diện tích cả khu đất là 140.3= 420 ( mét vuông )
(TM nghĩa là thoả mãn nhé bạn) ( Bài thì dễ nhưng đánh máy cực quá )
Quên mất cái chỗ diện tích mỗi mảnh nhỏ bạn nhớ ghi mét vuông nhé
Bài giải
a, Diện tích mảnh đất hình chữ nhật là:
12.6=72(m2)
b, Diện tích đất trồng rau là:
(10.5):2=25(m2)
Diện tích phần đất còn lại là:
72-25=47(m2)
c, Số kg rau thu được là:
25.2=50(kg)
Đáp số: a, 72m2
b, 25m2 và 47m2
c, 50kg rau
Gọi chiều dài mảnh vườn là a (m) (a>7)
chiểù rộng mảnh vườn là b (m) (b>0)
Theo bài ra : a^2+b^2=13^2=169 (định lí Py-ta-go)
Ta có (a-b)^2=7^2
=>a^2+b^2-2ab=49
=>-2ab=49-169=-120
=>ab=-120:-2=60 => diện tích mảnh vườn là 60 m2
S1=5,5*8,8=48,4m2
S2=5,5^2=30,25m2
S3=8,05*5,5/2=22,1375m2
S4=4,04*11=44,44m2
=>Diện tích mảnh đất 3 là bé nhất
Câu 1:
Gọi x là chiều dài mảnh đất (0<x<14; x>y)
Gọi y là chiều rộng mảnh vườn (0<y<14)
Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)
Vì đường chéo mảnh đất bằng 10m nên ta có PT:
x2+y2=100 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)(HPT dễ rồi bạn tự giải nha)
⇔\(\left\{{}\begin{matrix}y=8\\y=6\end{matrix}\right.\)(TM)
Vậy ta có 2 tập nghiệm (x;y) là (6;8) và (8;6)
-Độ dài 2 cạnh mảnh đất lần lượt là: 6cm và 8cm
Câu 1:
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chu vi mảnh đất là 28m nên ta có phương trình:
2(a+b)=28
hay a+b=14(1)
Vì đường chéo hình chữ nhật là 10m nên Áp dụng định lí Pytago, ta được:
\(a^2+b^2=100\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-28b+196+b^2-100=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=14-8=6\\b=14-6=8\end{matrix}\right.\\\left[{}\begin{matrix}b=6\\b=8\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\)(thỏa ĐK)
Vậy: Độ dài hai cạnh của mảnh đất hình chữ nhật lần lượt là 8m và 6m
Gọi chiều rộng của mảnh đất hình chữ nhật là x (m) (0 < x < 13)
Chiều dài mảnh đất hình chữ nhật lớn hơn chiều rộng 7m nên chiều dài của mảnh đất hình chữ nhật là x + 7 (m)
Biết độ dài đường chéo là 13m nên theo định lý Pitago ta có phương trình:
Vậy chiều rộng mảnh đất hình chữ nhật là 5m và chiều dài mảnh đất đó là 12m.
Chọn đáp án C