K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Đáp án D

Vậy giá trị lớn nhất của y trên đoạn [1;2]y(2)=0.

NV
5 tháng 12 2021

\(y'=\dfrac{3}{\left(x+2\right)^2}>0\Rightarrow\) hàm đồng biến trên đoạn đã cho

\(\Rightarrow\max\limits_{\left[0;1\right]}y=y\left(1\right)=0\)

8 tháng 12 2018

20 tháng 8 2019

Đáp án D

Với x ∈ − 2 ; 1  ta có

y = − x 2 + 2 ⇒ y ' = − 2 x ; y ' = 0 ⇔ x = 0.

Ta có  y − 2 = − 2 ; y 0 = 2 ; y 1 = 1

Xét x ∈ 1 ; 3  ta có

y = x ⇒ y ' = 1 > 0.

Ta có y 3 = 3

Suy ra  max − 2 ; 3 y = 3

9 tháng 9 2018

Chọn A

Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau

Nhận thấy

Để tìm  ta so sánh f(-1) và f(2)

Theo giả thiết, 

Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0 


1 tháng 7 2018

13 tháng 8 2017

Đáp án B

23 tháng 6 2019

Ta có: y’= 1-e-x

Và y’= 0 khi 1-e-x = 0 nên   x=0 .

Hàm số đã cho liên tục và xác định trên đoạn [-1 ;1]

Ta có: y(-1) = -1+e ; y(0) = 1 ; y(1) = 1+ e-1  .

Do đó  

Vậy T=  1+ e - 1= e

Chọn B

 

7 tháng 4 2018

Ta có

 

Ta có:  f ( 0 ) = 1 ⇒ 1 = 3 C

Xét hàm  trên [-2;1]

Ta có

  

Nhận thấy f ' ( x ) > 0 ∀ x ∈ ℝ ⇒  Hàm số đồng biến trên (-2;1)

Suy ra  m a x - 2 ; 1   f ( x ) = f ( 1 ) = 16 3

Chọn đáp án C.

9 tháng 9 2018

Đáp án là C.

• Ta có: y , = 1 2 x + 1 - 1 2 3 - x , cho y , = 0 ⇔ x = 1 ∈ - 1 ; 3  

• Tính được:   y ( - 1 ) = 2 ;   y ( 3 ) = 2 ;   y ( 1 ) = 2 2

            Vậy  m a x   y [ - 1 ; 3 ] = 2 2