a) So sánh ...
a ) 25 + 9 v à 25 + 9 b ) v ớ i a > 0 ; b > 0 ; c h ứ n g m i n h a + b < a + b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{-4}=\frac{-3}{4};\frac{-1}{-4}=\frac{1}{4}\)
Vì - 3 < 1 nên \(\frac{-3}{4}< \frac{1}{4}\)
hay \(\frac{3}{-4}< \frac{-1}{-4}\)
Quy đồng mẫu ta được:
15/17=15.27/17.27=405/459
25/27=25.17/27.27=425/459
⇒405/459<425/459⇒15/17<25/27
a) Ta có:
+)√25+9=√34+)25+9=34.
+)√25+√9=√52+√32=5+3+)25+9=52+32=5+3
=8=√82=√64=8=82=64.
Vì 34<6434<64 nên √34<√6434<64
Vậy √25+9<√25+√925+9<25+9
b) Với a>0,b>0a>0,b>0, ta có
+)(√a+b)2=a+b+)(a+b)2=a+b.
+)(√a+√b)2=(√a)2+2√a.√b+(√b)2+)(a+b)2=(a)2+2a.b+(b)2
=a+2√ab+b=a+2ab+b
=(a+b)+2√ab=(a+b)+2ab.
Vì a>0, b>0a>0, b>0 nên √ab>0⇔2√ab>0ab>0⇔2ab>0
⇔(a+b)+2√ab>a+b⇔(a+b)+2ab>a+b
⇔(√a+√b)2>(√a+b)2⇔(a+b)2>(a+b)2
⇔√a+√b>√a+b⇔a+b>a+b (đpcm)
a, Ta có : \(\sqrt{25+9}=\sqrt{34}\)
\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)
mà 34 < 64 hay \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
bình phương 2 vế ta được : \(a+b< a+2\sqrt{ab}+b\)
\(\Leftrightarrow2\sqrt{ab}>0\)vì \(a;b>0\)nên đẳng thức này luôn đúng )
Vậy ta có đpcm
a, bé hơn 0 vì một số âm nhân với 1 số dương thì luôn bằng số âm
b, bé hơn 0 vì một số âm nhân với 1 số dương thì luôn bằng số âm
c, bé hơn 0 vì một số âm nhân với một số dương thì kết quả sẽ luôn bé hơn số âm đó
a)
`a-10>b-10`
`<=>a-10+10>b-10+10`
`<=>a>b`
c)
`-a-9≥-b-9`
`<=>-a-9+9≥-b-9+9`
`<=>-a≥-b`
`<=>-a*(-1)/1≤-b*(-1)/1`
`<=>a≤b`
e)
`-4a+9< -4b+9`
`<=>-4a+9-9< -4b+9-9`
`<=>-4a< -4b`
`<=>-4a*(-1)/4> -4b*(-1)/4`
`<=>a>b`
b)
`25+a>25+b`
`<=>25+a-25>25+b-25`
`<=>a>b`
f)
cái giữa là dấu gì vậy ạ
\(a,a-10>b-10\)
\(\Rightarrow a-10+10>b-10+10\)
\(\Leftrightarrow a>b\)
\(b,-a-9\ge-b-9\)
\(\Rightarrow-a-9+9\ge-b-9+9\)
\(\Leftrightarrow-a\ge-b\)
\(c,-4a+9< -4b+9\)
\(\Rightarrow-4a+9-9< -4b+9-9\)
\(\Leftrightarrow a< b\)
\(d,25+a>25+b\)
\(\Rightarrow25+a-25>25+b-25\)
\(\Leftrightarrow a>b\)
Câu cuối thiếu dấu bạn ơi!
a) Tính √25 + √9 rồi so sánh kết quả với .
Trả lời: < √25 + √9.
b) Ta có: = a + b và
= + 2√a.√b +
= a + b + 2√a.√b.
Vì a > 0, b > 0 nên √a.√b > 0.
Do đó < √a + √b
a) Tính √25 + √9 rồi so sánh kết quả với .
Trả lời: < √25 + √9.
b) Ta có: = a + b và
= + 2√a.√b +
= a + b + 2√a.√b.
Vì a > 0, b > 0 nên √a.√b > 0.
Do đó < √a + √b
a) Ta có:
b) Ta có: