cho tam giác ABC có góc A = 90 độ, AB=3cm, AC=4cm, BC=5cm. Tính chiều cao AH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng ĐL Pytago vào tam giác ABC: BC^2= AB^2+AC^2= 3^2+4^2=25 =>> BC=5
Áp dụng hệ thức lượng: AH.BC=AB.AC => AH.5=3.4 => AH= 2,4
b) Áp dụng tỉ số lượng giác: sinB= AC/BC= 4/5= 0,8 => góc B= 59 độ
Góc C= 180-90-59= 31 độ
c) Áp dụng Pytago vào tam giác BHA: BH=1,8 (tự tính)
Góc BAH= 180-90-59= 31 độ
Góc BAE= 90/2= 45 độ (phân giác)
Góc HAE= 45 - 31= 14 độ
HE= tanHAE. AH= tan14. 2,4= 0,53
BE= HE+ BH= 0,53 + 1,8 = 2,33
CE= BC - BE= 5-2,33= 2,67
MẤY BÀI NÀY CHỈ CẦN THUỘC CÔNG THỨC LÀ LÀM ĐƯỢC HẾT .-. CHỊU KHÓ HỌC THUỘC ĐI RỒI MẤY BÀI NÀY SẼ TRỞ NÊN ĐƠN GIẢN ĐẾN BẤT NGỜ :))) ĐÂY LÀ KIẾN THỨC CŨ KO BIẾT LÀM ĐÚNG KO NỮA :33 HÊN XUI NHÁ!!
CỐ LÊN BABEEE <3
75% = 3/4
Tổng độ dài AB và AC là: 3 + 4 = 7 (phần)
Giá trị 1 phần: 120 : ( 3 + 4 + 5) = 10 (cm)
Cạnh AC: 10 x 3 = 30 (cm)
Cạnh AB: 10 x 4 = 40 (cm)
Cạnh BC: 10 x 5 = 50 ( cm)
DT tam giác ABC:( 30 x 40): 2= 60 (cm2)
Chiều cao tương ứng của cạnh BC: 60 x 2 : 50 = 24
Học Tốt ^-^
a, tam giác ABH và tam giác CAH có:
AB = AC
AH: cạnh chung
góc H1 = góc H2 (=90*)
=> tam giác ABH = tam giác CAH
=> HB = HC (cạnh tương ứng )
=> góc BAH = góc CAH ( góc tương ứng)
ko chắc đúng đâu
b, bn tự tính nhé !!
c, câu này sai đề nhé bn !! AH vuông góc BC thì H thuộc BC, nhưg HE sao lại vuông góc với BC?
A B C H D E
a) Vì trong tam giác cân đường cao đông thời là trung tuyến ;trung trực ,...
Nên AH là đường cao đồng thời là trugn tuyến ứng với canh BC
=>HB=HC
b) Ta có HB+HC=BC
=>HB=HC=BC/2=8/2=4cm
Ap dụng định lí Py-ta-go vào tam giác BAH ta có
AH2+BH2=AB2
AH2=AB2-BH2
AH2= 52-42
AH2=25-16=9
=>AH=3
C)Xét tam giác vuông BDH và CEH ta có
HB=HC(theo câu a)
Góc B=C(Vì tam giác ABC cân ở A)
=>tam giác BDH=CEH(ch-gn)
=>HD=HE(tương ứng)
Vậy tam giác HDE có HD=HE nên cân ở H
A B C H E F 5 cm 12 cm
a) Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A ta có :
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=5^2+12^2\)
\(\Leftrightarrow BC^2=169\)
\(\Leftrightarrow BC=13\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác ta có : \(AB.AC=BC.AH\)
\(\Leftrightarrow AH=\frac{5.12}{13}=\frac{60}{13}\left(cm\right)\)
b) Áp dụng hệ thức lượng ta có \(AB^2=BH.BC\Leftrightarrow BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)
Do BE là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\frac{AE}{HE}=\frac{AB}{BH}=5\div\frac{25}{13}=\frac{13}{5}\)
Theo dãy tỉ số bằng nhau ta được :
\(\frac{AE}{13}=\frac{HE}{5}=\frac{AE+HE}{13+5}=\frac{AH}{18}=\frac{60}{13}\div18=\frac{10}{39}\)
\(\Rightarrow AE=\frac{10}{39}\times13=\frac{10}{3}\left(cm\right)\)
Mặt khác BF là tia phân giác \(\widehat{ABC}\)
\(\Rightarrow\frac{AF}{FC}=\frac{AB}{BC}=\frac{5}{13}\)
Theo dãy tỉ số bằng nhau ta được :
\(\frac{AF}{5}=\frac{FC}{13}=\frac{AF+FC}{5+13}=\frac{AC}{18}=\frac{2}{3}\)
\(\Rightarrow AF=\frac{2}{3}\times5=\frac{10}{3}\left(cm\right)\)
Xét \(\Delta AEF\)có \(AE=AF\left(=\frac{10}{3}cm\right)\)
\(\Rightarrow\Delta AEF\)cân tại A ( đpcm )
Vậy ...
hình,
A B C H E F 1 2 1 2 1
~~~
a/ A/dụng pitago vào tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2=5^2+12^2=169\Rightarrow BC=13\left(cm\right)\)
Xét ΔHBA và ΔABC có:
\(\left\{{}\begin{matrix}\widehat{H}=\widehat{A}=90^o\left(gt\right)\\\widehat{B}:chung\end{matrix}\right.\)
=>ΔHBA ~ ΔABC (g.g)
=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{5\cdot12}{13}\approx4,6\left(cm\right)\)
b/ Xét ΔABF và ΔHBE có:
\(\left\{{}\begin{matrix}\widehat{A}=\widehat{H}=90^o\left(gt\right)\\\widehat{B_1}=\widehat{B_2}\left(gt\right)\end{matrix}\right.\)
=> ΔABF ~ ΔHBE (g.g)
=> \(\widehat{F_1}=\widehat{E_2}\) (2 góc tương ứng)
mặt khác: \(\widehat{E_1}=\widehat{E_2}\)(đối đỉnh)
=> \(\widehat{F_1}=\widehat{E_1}\)
=> ΔAEF cân tại A (đpcm)
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
c) Mình bó tay :P
d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=) HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=) HD<HC
a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2 = 5 mũ 2
AH mũ 2 + 16 = 25
AH mũ 2 = 25 - 16
AH mũ 2 = 9
=> AH = căn bậc 2 của 9 = 3 cm
d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn)
=> HD = HE (tương ứng)
Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)
=> HD<HC