K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

Đáp án D

Phương pháp:

+) Xét hàm số h(x) = f(x) - 2017 = ax4 + bx2 + c - 2017

+) Tìm số điểm cực trị của hàm số h(x) bằng cách giải phương trình h'(x) = 0

+) Xác định dấu của h(0); h(1); h(-1) và vẽ đồ thị hàm số y = h(x), từ đó vẽ đồ thị hàm số y = |h(x)| và kết luận.

Cách giải:

Xét hàm số h(x) = f(x) - 2017 = ax4 + bx2 + c - 2017,

 

với a > 0, c > 2017, a + b + c < 2017 nên b < 0

Ta có: h(0) = c - 2017 > 0, h(-1) = h(1) = a + b + c - 2017 < 0

⇒ h(0).(h-1) < 0, h(0).h⁡(1) < 0

⇒ ∃ x1, x2: x1 ∈ (-1;0), x2 ∈ (0;1) mà h(x1) = h(x2) = 0

Do đó, đồ thị hàm số y = h(x) và y = |h(x)| dạng như hình vẽ bên.

Vậy, số cực trị của hàm số y = |f(x) - 2017| là 7

9 tháng 6 2018

Bài 6 . Áp dụng BĐT Cauchy , ta có :

a2 + b2 ≥ 2ab ( a > 0 ; b > 0)

⇔ ( a + b)2 ≥ 4ab

\(\dfrac{\left(a+b\right)^2}{4}\)≥ ab

\(\dfrac{a+b}{4}\)\(\dfrac{ab}{a+b}\) ( 1 )

CMTT , ta cũng được : \(\dfrac{b+c}{4}\)\(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\)\(\dfrac{ac}{a+c}\)( 3)

Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :

\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

\(\dfrac{a+b+c}{2}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

9 tháng 6 2018

Bài 4.

Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :

\(1+\dfrac{a}{b}\)\(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)

\(1+\dfrac{b}{c}\)\(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)

\(1+\dfrac{c}{a}\)\(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)

Nhân từng vế của ( 1 ; 2 ; 3) , ta được :

\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)\(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)

9 tháng 12 2016

a) * f(-2)

=-2.(-2)+1

=2

 * f(3)

=-2.3+1

=-5

b) hàm số y=-2x+1

 với x=-1 thì y=3 không bằng 1 

Vậy M(-1,1)ko thuộc đồ thị hàm số f(x)

c) ta có 1>0 

=> -2x+1=1

      -2x=1-1

      -2x=0

       x=0/(-2)

       x=0

=> x=0

vậy x=0 thì f(x)>0

nhớ k giùm mình nha

9 tháng 12 2016

a)\(F\left(-2\right)=-2.\left(-2\right)+1=5\)

    \(F\left(\frac{1}{2}\right)=-2.\left(\frac{1}{2}\right)+1=0\)

    \(F\left(3\right)=-2.3+1=-5\)

    \(F\left(1\right)=-2.1+1=-1\)

Bài 1: Cho hàm số: f(x) = ax2 – 2(a + 1)x + a + 2 ( a ≠ 0) a) Chứng tỏ rằng phương trình f(x) = 0 luôn có nghiệm thực. Tính các nghiệm đó. b) Tính tổng S và tích P của các nghiệm của phương trình f(x) = 0. Khảo sát sự biến thiên và vẽ đồ thị hàm số của S và P theo a. Bài 2: Cho hàm số: y= \(-\dfrac{1}{3}\)x3 + (a − 1)x2 + (a + 3)x − 4 a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm...
Đọc tiếp

Bài 1: Cho hàm số:

f(x) = ax2 – 2(a + 1)x + a + 2 ( a ≠ 0)

a) Chứng tỏ rằng phương trình f(x) = 0 luôn có nghiệm thực. Tính các nghiệm đó.

b) Tính tổng S và tích P của các nghiệm của phương trình f(x) = 0. Khảo sát sự biến thiên và vẽ đồ thị hàm số của S và P theo a.

Bài 2:

Cho hàm số: y= \(-\dfrac{1}{3}\)x3 + (a − 1)x2 + (a + 3)x − 4

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số khi a = 0

b) Tính diện tích hình phẳng giới hạn bởi (C) và đường thẳng y = 0, x = -1, x = 1

Bài 3:

Cho hàm số : y = x3 + ax2 + bx + 1

a) Tìm a và b để đồ thị của hàm số đi qua hai điểm A(1, 2) và B(-2, -1)

b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với các giá trị tìm được của a và b.

c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường thẳng y = 0, x = 0, x = 1 và đồ thị (C) quanh trục hoành.


0
22 tháng 4 2016

ai làm có thưởng 2điem

NV
3 tháng 5 2019

a/

Do \(\left\{{}\begin{matrix}a>2\Rightarrow\frac{1}{a}< \frac{1}{2}\\b>2\Rightarrow\frac{1}{b}< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{2}+\frac{1}{2}=1\)

\(\Rightarrow\frac{a+b}{ab}< 1\Rightarrow a+b< ab\) (đpcm)

b/ Ko rõ đề là gì

c/ \(\frac{a^2+b^2}{2}\ge ab\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh