K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

17 tháng 8 2020

Ta có : D = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{10.10}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}< 1\)

=> D < 1 (đpcm)

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^3}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

...

\(\frac{1}{10^2}< \frac{1}{9.10}\)

=)) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

Mà \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}=\frac{9}{10}< 1\)

=)) A < 1 (đpcm)

16 tháng 3 2016

A la dat tren tong

We have: A = 1/2 ^ 2 + 1/3 ^ 2 + 1/4 ^ 2 + ........... + 1/10 ^ 2

A = 1 / 2.2 + 1 / 3.3 + 1 / 4.4 + ....... + 1 / 10:10

A  <1 / 1.2 + /2.3 + 1/3.4 +......+1/9.10

A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ....+ 1/9 - 1/10

A < 1-1/10

Ma 1 - 1/10 = 9/10 < 1

=>A < 1 (dpcm)

16 tháng 3 2016

dễ 

1/2^2=1/1.2

1/3^2=1/2.3

1/4^2=1/3.4

....

1/10^2=1/9.10

1/1.2+1/2.3+1/3.4+...+1/9.10

=(1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10)

=1-1/10

=9/10

tối nay mk sẽ trả lời , đợi nha, mk đi hk đã

ta có:

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\),

 \(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}...\)

\(\frac{1}{10^2}=\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)

Từ trên => A < \(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

=> \(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{9}-\frac{1}{10}\)

=> \(A< \frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)

=> \(A< \frac{2}{5}\)mà \(\frac{2}{5}< \frac{1}{2}\)

=> \(A< \frac{1}{2}\)=> \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< \frac{1}{2}\)

Chúc bn học tốt !