K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: BH=BC/2=3(cm)

=>AH=4(cm)

c: Ta có: AH là đường trung tuyến

mà AG là đường trung tuyến

nên A,H,G thẳng hàng

d: Xét ΔABG và ΔACG có

AB=AC

\(\widehat{BAG}=\widehat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

20 tháng 4 2022

undefined

a) có BE là tia p/g của góc ABC

       => góc B1 = góc B2 = góc ABC/2 = 600 /2 = 300

  có △ABC vuông tại A => △ABE vuông tại A

         EH⊥BC=> △HBE vuông tại H

Xét △ vuông ABE và △vuông HBE có

             góc B1 = góc B2

                    BE chung

=>△ vuông ABE =△vuông HBE ( cạnh huyền - góc nhọn)

b) có △ABE vuông tại A=> góc B1 + góc E1 = 900

                                         góc E1 = 600   ( vì góc B1 = 300)

có △ vuông ABE =△vuông HBE

    => góc E1 = góc E2 

mà HK//BE => góc E1 = góc K1     (ĐV)

                       và góc E2 = góc H1 (SLT)

=> góc E1 = góc E2 = góc K1=góc H1 = 600

 => △HEK đều

c) có góc E1 = góc E2 ; góc E3 = góc E4

  =>góc E1 +góc E4 = góc E2 + góc E3

=> góc BEM= góc BEC

Xét △BEM và △ BEC có

             góc B1 = góc B2

                   BE chung

          góc BEM= góc BEC

=> △BEM = △ BEC (g.c.g)

=>BM=BC

=>△BMC cân tại B

trong △BMC có BN là đường p/g xuất phát từ đỉnh B

lại có △BMC cân tại B

=> BN cũng là đường trung tuyến xuất phát từ đỉnh B

=> N là trung điểm của MC

=> NM=NC

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{C}+60^0=90^0\)

hay \(\widehat{C}=30^0\)

Vậy: \(\widehat{C}=30^0\)

a) Xét ΔABC có \(\widehat{C}< \widehat{B}< \widehat{A}\left(30^0< 60^0< 90^0\right)\)

mà cạnh đối diện với góc C là cạnh AB

và cạnh đối diện với góc B là cạnh AC

và cạnh đối diện với góc A là cạnh BC

nên AB<AC<BC(đpcm)