Cho hệ phương trình 2 x + m y = 1 m x + 2 y = 1 . Gọi M ( x 0 ; y 0 ) trong đó ( x 0 ; y 0 ) là nghiệm duy nhất của hệ. Phương trình đường thẳng cố định mà M chạy trên đường thẳng đó là:
A. (d): y = 2x – 1
B. (d): y = x – 1
C. (d): x = y
D. (d): y = x + 1
2 x + m y = 1 m x + 2 y = 1 ⇔ y = 1 − m x 2 2 x + m 1 − m x 2 = 1 ⇔ y = 1 − m x 2 4 − m 2 x = 2 − m ⇔ y = 1 − m x 2 2 − m 2 + m x = 2 − m
Nếu m = 2 ⇒ 0x = 0 hệ phương trình có vô số nghiệm
Nếu m = − 2 ⇒ 0x = 4 hệ phương trình vô nghiệm
Nếu m ≠ ± 2 ⇒ ( 2 + m ) x = 1 x = 1 2 + m ⇒ y = 1 2 + m ⇒ M 1 2 + m ; 1 2 + m
Nhận thấy: M có tọa độ thỏa mãn tung độ = hoành độ
M nằm trên đường thẳng (d): x = y
Đáp án:C