K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Ta có:  x + 1 3  = 3x + m (1)

⇔  x + 1 3  − 3x – 4 = m – 4

Số nghiệm của phương trình (1) là số giao điểm của hai đường :

y = g(x) =  x + 1 3  − 3x – 4 (C’) và y = m – 4 ( d 1 )

Từ đồ thị, ta suy ra:

    +) m > 5 hoặc m < 1: phương trình (1) có một nghiệm.

    +) m = 5 hoặc m = 1 : phương trình (1) có hai nghiệm.

    +) 1 < m < 5 , phương trình (1) có ba nghiệm.

7 tháng 3 2018

a)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Tịnh tiến (C) song song với trục Ox sang trái 1 đơn vị, ta được đồ thị (C1) của hàm số.

y = f(x) = − ( x + 1 ) 3  + 3(x + 1) + 1 hay f(x) = − ( x + 1 ) 3  + 3x + 4 (C1)

Lấy đối xứng (C1) qua trục Ox, ta được đồ thị (C’) của hàm số y = g(x) =  ( x + 1 ) 3  − 3x – 4


c) Ta có:  ( x + 1 ) 3  = 3x + m (1)

⇔  ( x + 1 ) 3  − 3x – 4 = m – 4

Số nghiệm của phương trình (1) là số giao điểm của hai đường :

y = g(x) =  ( x + 1 ) 3  − 3x – 4 (C’) và y = m – 4 (d1)

Từ đồ thị, ta suy ra:

    +) m > 5 hoặc m < 1: phương trình (1) có một nghiệm.

    +) m = 5 hoặc m = 1 : phương trình (1) có hai nghiệm.

    +) 1 < m < 5 , phương trình (1) có ba nghiệm.

d) Vì (d) vuông góc với đường thẳng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có hệ số góc bằng 9.

Ta có: g′(x) = 3 ( x + 1 ) 2  – 3

g′(x) = 9 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Có hai tiếp tuyến phải tìm là:

y – 1 = 9(x – 1) ⇔ y = 9x – 8;

y + 3 = 9(x + 3) ⇔ y = 9x + 24.

15 tháng 4 2022

NGUUUUUUUU

18 tháng 9 2019

Số nghiệm của phương trình  x 3 + 3 x 2 + 1 = m 2  bằng số giao điểm của đồ thị (C) và đường thẳng y = m/2.

Từ đồ thị ta có:

+ Đường thẳng cắt đồ thị tại 1 điểm khi và chỉ khi :

Giải bài 7 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

⇒ phương trình có 1 nghiệm.

+ Để đường thẳng cắt đồ thị tại 2 điểm phân biệt khi và chỉ khi :

Giải bài 7 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Phương trình có hai nghiệm.

+ Với Giải bài 7 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 ⇔ 2 < m < 10.

⇒ Đường thẳng cắt đồ thị hàm số tại 3 điểm

⇒ Phương trình có ba nghiệm phân biệt.

a: loading...

b: \(\Delta=\left(-2m\right)^2-4\cdot1\cdot4=4m^2-16\)

Để phương trình có hai nghiệm phân biệt thì 4m^2-16>0

=>m>2 hoặc m<-2

Để phương trình có nghiệm duy nhất thì 4m^2-16=0

=>m=2 hoặc m=-2

Để phương trìh vô nghiệm thì 4m^2-16<0

=>-2<m<2

31 tháng 3 2017

a) y = x3 + 3x2 + 1

Tập xác định: D = R

y’= 3x2 + 6x = 3x(x+ 2)

y’=0 ⇔ x = 0, x = -2

Bảng biến thiên:

Đồ thị hàm số:

b) Số nghiệm của phương trình \(x^3+3x^2+1=\dfrac{m}{2}\) chính là số giao điểm của (C) và đường thẳng (d): \(y=\dfrac{m}{2}\) (đường thẳng (d) vuông góc với Oy và cắt Oy tại \(\dfrac{m}{2}\) )

Từ đồ thị ta thấy:

- Với \(\dfrac{m}{2}< 1\Leftrightarrow m< 2\) : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

- Với \(\dfrac{m}{2}=1\Leftrightarrow m=2\) : (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm.

- Với \(1< \dfrac{m}{2}< 5\)\(\Leftrightarrow2< m< 10\)

- Với \(\dfrac{m}{2}=5\Leftrightarrow m=10\): (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.

- Với  \(\dfrac{m}{2}>5\Leftrightarrow m>10\): (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).

Đường thẳng đi qua hai điểm này có phương trình là: 1\(y-14=x-2\Leftrightarrow y=x+12\).

 

31 tháng 3 2017

a) y = x3 + 3x2 + 1

Tập xác định: D = R

y’= 3x2 + 6x = 3x(x+ 2)

y’=0 ⇔ x = 0, x = -2

Bảng biến thiên:

Đồ thị hàm số:

b) Số nghiệm của phương trình x^3+3x^2+1=m/2chính là số giao điểm của (C) và đường thẳng (d): y=m/2 (đường thẳng (d) vuông góc với Oy và cắt Oy tại )

Từ đồ thị ta thấy:

- Với m/2<1⇔m<2: (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

- Với m/2=1⇔ m = 2: (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm

- Với 1<m/2<5⇔ 2<m

- Với m/2=5⇔m=10: (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.

- Với m/2>5⇔m>10 : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).

Đường thẳng đi qua hai điểm này có phương trình là: y−14=x−2⇔y=−2x+1


21 tháng 7 2017

f(x)=-x^2+3x+2=2+9/4-(x^2-2.3/2x+9/4) =17/4 -(x-3/2)^2

f(x)<=17/4

f(x)=17/4 -(x-3/2)^2 luôn có 2 nghiệm x1 và x2 => |f(x)| >=0

f(x)<=17/4 => |f(x)| <=17 /4 khi x thuộc (x1;x2)

=>biên luận

nếu 2m-1 =0 => f(x) =2m-1 có 2 nghiệm x1, x2

nếu 2m-1 <0 => f(x) =2m-1 vô nghiệm

nếu 2m-1 =17/4 => f(x) =2m-1 có 3 nghiệm

nếu 2m-1 >17/4 => f(x) =2m-1 có 2 nghiệm

0<nếu 2m-1 <17/4 => f(x) =2m-1 có 4 nghiệm

Bạn tự giải ra m

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số