K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Đa thức dư là a – 4. Vậy a = 4 thì A chia hết cho B.

22 tháng 12 2021

Câu b đề thiếu rồi bạn

22 tháng 12 2021

a: \(\Leftrightarrow2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2+a-2⋮x^2-x+1\)

=>a=2

22 tháng 12 2021

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

a: 3x^3+2x^2-7x+a chia hêt cho 3x-1

=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1

=>a-2=0

=>a=2

c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4

=>3a+19=4

=>3a=-15

=>a=-5

d: 2x^3-x^2+ax+b chiahêt cho x^2-1

=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1

=>a+2=0 và b-1=0

=>a=-2 và b=1

27 tháng 11 2020

3x^3 + 2x^2 - 7x + a 3x - 1 x^2 + x - 2 3x^3 - x^2 3x^2 - 7x 3x^2 - x -6x + a -6x + 2 a - 2

Để : \(3x^3+2x^2-7x+a⋮3x-1\)<=> \(a-2=0\)

<=> \(a=2\)

Vậy a = 2 

27 tháng 11 2020

3x^3 + 3x^2 + 5x + a x + 3 3x^2 - 6x + 22 3x^3 + 9x^2 -6x^2 + 5x -6x^2 - 18x 22x + a 22x + 66

Để \(x^3+3x^2+5x+a⋮x+3\)<=> \(a-66=0\)

<=> \(a=66\)

Vậy a = 66

28 tháng 8 2018

A ( x ) = x3 - 3x2 + 5x + m 

          = x3 - 2x2 - x2 + 2x + 3x + m 

          = x2 ( x - 2 ) - x ( x - 2 ) + ( 3x + m )

           = ( x - 2 ) ( x2 - x ) + ( 3x + m )
Vì A chia hết cho x - 2 

=> ( x - 2 ) ( x2 - x ) + ( 3x + m ) chia hết cho x - 2

mà ( x - 2 ) ( x2 - x ) chi hết cho x - 2

=> 3x + m chia hết cho x - 2

 mà  3 ( x - 2 )  chia hết cho x - 2

=  3x - 6 chia hết cho x - 2

=> m = - 6

Vậy với m = - 6 thì A ( x ) = x3 - 3x2 + 5x + m chia hết cho B ( x ) = x - 2 

24 tháng 12 2016

a) Áp dụng định lý Bézout ( Bê-du ) , dư của \(f\left(x\right)=x^3+x^2-x+a\)cho x + 2 = x - (-2) là \(f\left(-2\right)\)

Để f(x) chia hết cho x + 2 thì f(-2)=0

\(\Rightarrow\left(-2\right)^3+\left(-2\right)^2-\left(-2\right)+a=0\)

\(-8+4+2+a=0\)

\(a-2=0\)

\(a=2\)

Vậy ...

24 tháng 12 2016

c) \(\frac{n^3+n^2-n+5}{n+2}=\frac{n^3+2n^2-n^2-2n+n+2+3}{n+2}\)nguyên để \(n^3+n^2-n+5⋮n+2\)

\(\Rightarrow\frac{n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)+3}{n+2}\in Z\)

\(\Rightarrow n^2-n+1+\frac{3}{n+2}\in Z\)

\(n^2,n,1\in Z\Rightarrow\frac{3}{n+2}\in Z\)

\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n\in\left\{-5;-3;-1;1\right\}\)

Vậy ...

a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7 
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp: 
TH1: 2x-3 = -1 <=> x = 1 
TH2: 2x-3 = 1 <=> x = 2 
TH3: 2x-3 = -7 <=> x = -2 
TH4: 2x-3 = 7 <=> x = 5 
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}

a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7 
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp: 
TH1: 2x-3 = -1 <=> x = 1 
TH2: 2x-3 = 1 <=> x = 2 
TH3: 2x-3 = -7 <=> x = -2 
TH4: 2x-3 = 7 <=> x = 5 
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5} 

b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5 
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp) 
TH1: x-3 = -5 <=> x = -2 
TH2: x-3 = -1 <=> x = 2 
TH3: x-3 = 1 <=> x = 4 
TH4: x-3 = 5 <=> x = 8 
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}