Giải các phương trình:
a) 3 + x − 2 = 0 ; b) − x + 2 + 1 = 0 ;
c) 1 − 2 x = 3 x + 1 ; d) x + 1 = 3 2 − x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\left(x^2+2x+5\right)\left(x^2+4x\right)=0\)
Ta có: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\ge4>0;\forall x\)
\(\Rightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b.\(\left(x^2-4x+4\right)\left(x^2-3x\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=3\end{matrix}\right.\)
c.\(1,2x^3-x^2-0,2x=0\)
\(\Leftrightarrow x\left(1,2x^2-x-0,2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-\dfrac{1}{6}\end{matrix}\right.\)
a.
\(\dfrac{x+1}{x-1}>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
b.
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+2\right)}{x-9}< 0\Rightarrow\left[{}\begin{matrix}x< -2\\1< x< 9\end{matrix}\right.\)
a/
\(\Leftrightarrow x^2-2x+4-4=0\\ \Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow x=0;x-2=0\)
\(\Leftrightarrow x=0;x=2\)
b/
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2x\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-2x\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3-x\right)=0\)
\(\Rightarrow x=3\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x+6>=0\\x-2>=0\end{matrix}\right.\Leftrightarrow x>=2\)
\(\sqrt{x+6}-\sqrt{x-2}=2\)
=>\(\left(\sqrt{x+6}-\sqrt{x-2}\right)^2=4\)
=>\(x+6+x-2-2\sqrt{\left(x+6\right)\left(x-2\right)}=4\)
=>\(2\sqrt{\left(x+6\right)\left(x-2\right)}=2x+4-4=2x\)
=>\(\sqrt{\left(x+6\right)\left(x-2\right)}=x\)
=>\(\left\{{}\begin{matrix}x>=0\\\left(x+6\right)\left(x-2\right)=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=2\\x^2+4x-12=x^2\end{matrix}\right.\)
=>x=3
b: ĐKXĐ: \(x-3>=0\)
=>x>=3
\(2\sqrt{x-3}-2x+3=0\)
=>\(\sqrt{4x-12}=2x-3\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\4x-12=4x^2-12x+9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\4x^2-12x+9-4x+12=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\4x^2-16x+21=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
\(a,\left|2x+2\right|+10=2x\)
*TH1 : \(\left|2x+2\right|=2x+2\Leftrightarrow2x+2>0\Leftrightarrow x>-1\)
\(\Rightarrow2x+2+10=2x\)
\(\Leftrightarrow2x-2x=-10-2\)
\(\Leftrightarrow0x=-12\left(vô\cdot lý\right)\)
*TH2 :\(\left|2x+2\right|=-2x-2\Leftrightarrow-2x-2< 0\Leftrightarrow x>-1\)
\(\Rightarrow-2x-2+10=2x\)
\(\Leftrightarrow-2x-2x=-10+2\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=\dfrac{1}{2}\left(nhận\right)\)
Vậy \(S=\left\{\dfrac{1}{2}\right\}\)
\(b,\left|x-6\right|=\left|3-2x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=3-2x\\x-6=-3+2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;3\right\}\)
a, \(\left|sinx+\dfrac{1}{2}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow sin^2x+sinx+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow sin^2x+sinx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
b, \(tan^2\left(x+\dfrac{\pi}{6}\right)=3\)
\(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=\pm\sqrt{3}\)
\(\Leftrightarrow x+\dfrac{\pi}{6}=\pm\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(a,\left(đk:x\ge0\right)\)
\(x=0\Rightarrow\sqrt{0+3}+0=0\left(vô-nghiệm\right)\)
\(x>0\)
\(\)\(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}+\dfrac{4\sqrt{x}}{\sqrt{x+3}}=4\)
\(VT\ge2\sqrt{\dfrac{\sqrt{x+3}}{\sqrt{x}}.\dfrac{4\sqrt{x}}{\sqrt{x+3}}}=4\)
\(dấu"="xảy-ra\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}=\dfrac{4\sqrt{x}}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Leftrightarrow x=1\left(tm\right)\)
\(b.2x^4-5x^3+6x^2-5x+2=0\Leftrightarrow\left(x-1\right)^2\left(2x^2-2x+2\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2-2x+2=0\left(vô-nghiệm\right)\end{matrix}\right.\)
a) x ∈ { - 5 ; 1 } b) x ∈ ∅
c) x = 0 . d) x = 1 4