K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

Tọa độ giao điểm là nghiệm của hệ phương trình

x 2 + ​ y 2 − 6 x − 4 y + ​ 9 = 0 x 2 + ​ y 2 − 2 x − 8 y + ​ 13 = 0 ⇔ x 2 + ​ y 2 − 6 x − 4 y + ​ 9 = 0 − 4 x + ​ 4 y     − 4 = 0 ⇔ x 2 + ​ y 2 − 6 x − 4 y + ​ 9 = 0       ( 1 ) ​ x − y    + ​ 1 = 0                                     ( 2 ) ​

Từ (2) suy ra:  y = x+ 1 thay  vào (1) ta được:

  x 2 +   ( x +   1 ) 2     -   6 x   –   4 ( x +   1 )   +   9     =   0     x 2   +   x 2     +   2 x   +   1   -     6 x   -     4 x   –   4 +   9   = 0

2 x 2   –   8 x   +   6   =   0  

Vậy 2 đường tròn đã cho cắt  nhau tại 2 điểm là (1; 2) và (3;4).

ĐÁP ÁN B

28 tháng 4 2022

Do đường tròn tiếp xúc với trục Ox nên R = d(I,Ox) = |yI|.

Phương trình trục Ox là y = 0

Đáp án D đúng vì: Tâm I(−3;\(\dfrac{-5}{2}\)) và bán kính R=\(\dfrac{5}{2}\). Ta có   

d(I, Ox) = |yI| = R.

 

4 tháng 5 2021

Gọi \(M=\left(m;m+5\right)\left(m\in\right)R\) là điểm cần tìm.

\(\Rightarrow IM=\sqrt{2m^2+32}\)

Ta có: \(cos\left(AM;IM\right)=cos45^o\)

\(\Leftrightarrow\dfrac{R}{IM}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{2m^2+32}}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow\) vô nghiệm

Vậy không tồn tại điểm M thỏa mãn yêu cầu bài toán.

23 tháng 4 2023

1D; 2D; 3D

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Đây không phải là dạng của phương trình đường tròn (hệ số \({y^2}\) bằng -1).

b) Vì \({a^2} + {b^2} - c = {1^2} + {\left( { - 2} \right)^2} - 6 < 0\) nên phương trình đã cho không là phương trình tròn.

c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {2^2} - 1 = 11 > 0\) nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;2} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c}  = \sqrt {11} \).

NV
4 tháng 8 2021

Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)

Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn

Ta cần tìm B, C sao cho chi vi ABC lớn nhất

Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)

\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)

Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\) 

Dấu "=" xảy ra khi tam giác ABC đều

\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)

Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)

\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)

Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)

\(\Rightarrow m=-1\)

13 tháng 12 2021

Chọn C

NV
13 tháng 2 2022

Đường tròn (C) tâm \(I\left(0;0\right)\) bán kính R=1

Đường tròn \(\left(C_m\right)\) tâm \(I'\left(m+1;-2m\right)\) bán kính \(R'=\sqrt{5m^2+2m+6}\)

Ta có: \(II'=\sqrt{\left(m+1\right)^2+\left(2m\right)^2}=\sqrt{5m^2+2m+1}\)

Hai đường tròn tiếp xúc nhau khi:

\(\left[{}\begin{matrix}II'=R+R'\\II'=\left|R-R'\right|\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5m^2+2m+1}=\sqrt{5m^2+2m+6}+1\left(vn\right)\\\sqrt{5m^2+2m+1}=\sqrt{5m^2+2m+6}-1\end{matrix}\right.\)

\(\Rightarrow\sqrt{5m^2+2m+1}+1=\sqrt{5m^2+2m+6}\)

\(\Leftrightarrow\sqrt{5m^2+2m+1}=2\) 

\(\Leftrightarrow5m^2+2m-3=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{3}{5}\end{matrix}\right.\)

1: x^2+y^2+6x-2y=0

=>x^2+6x+9+y^2-2y+1=10

=>(x+3)^2+(y-1)^2=10

=>R=căn 10; I(-3;1)

Vì (d1)//(d) nên (d1): x-3y+c=0

Theo đề, ta có: d(I;(d1))=căn 10

=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)

=>|c-6|=10

=>c=16 hoặc c=-4