Cho khối lăng trụ đứng, mặt phẳng (P) đi qua C' và các trung điểm của AA', BB' chia khối lăng trụ ABC. A'B'C' thành hai khối đa diện có tỷ số thể tích bằng k với k ≤ 1. Tìm k.
A. 1 3
B. 2 3
C. 1
D. 1 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Gọi E, F lần lượt là các trung điểm của AA' và BB' khi đó ta có:
Vậy mặt phẳng (C'EF) chia khối lăng trụ thành hai phần có tỉ số thể tích bằng 1 2 .
Đáp án C.
V A B C . M N K = S A B C . C K = 2 3 S A B C . A ' A
V
C
'
M
K
=
1
3
C
'
K
.
S
=
1
9
C
'
C
'
S
A
B
C
=
1
9
A
'
.
A
.
S
A
B
C
⇒
V
2
=
V
A
B
C
.
M
N
K
+
V
C
'
.
M
N
K
=
2
3
S
A
B
C
.
A
A
'
+
1
9
A
'
A
.
S
A
B
C
=
7
9
A
'
A
.
S
A
B
C
V
M
N
K
A
'
B
'
C
'
=
S
M
N
K
.
C
'
K
=
1
3
S
A
B
C
.
A
'
A
⇒ V 1 = V M N K A ' B ' C ' - V C ' M N K = 1 3 S A B C . A ' A - 1 9 A ' A S A B C = 2 9 A ' A S A B C
Vậy : V 1 V 2 = 2 9 A ' A S A B C 7 9 A ' A S A B C = 2 7 .
Đáp án là A
Do AA' = 4A'M, BB' = 4B'N nên suy ra
Mặt khác, ta có
Từ (1), (2)
Vậy
Từ đó suy ra V 1 V 2 = 1 5
Chọn B
Gọi K là trung điểm của AA' và V, VABC.KMN, VA.KMN lần lượt là thể tích khối lăng trụ ABC. A'B'C' khối lăng trụ ABC. KMN và thể tích khối chóp A. MNK. Khi đó
Đáp án là B
Gọi V là thể tích khối lăng trụ ABC.A'B'C'
Mà
Do đó
Suy ra
Vậy V 1 V 2 = 2 7
Chọn D
Gọi D, E, F lần lượt là trung điểm của AA', BB', CC' và h là độ dài chiều cao của khối lăng trụ ABC. A'B'C'. Khi đó ta có: