K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

3x + 30 = 3 . 24 + 9 . 20210

<=> 3x + 30 = 3 . 16 + 9 .1

<=> 3x + 30 = 57

<=> 3x = 57 -  30

<=> 3x = 27

<=> 3x = 33

=> x = 3

a: Ta có: \(81^{125}=3^{500}\)

\(27^{130}=3^{390}\)

mà 500>390

nên \(81^{125}>27^{130}\)

25 tháng 10 2015

<

            >

4^30=2^30*2^30

=2^30*4^15

3*24^10=3*3^10*8^10=3^11*2^30

mà 4^30>3^11

nên 2^30+3^30+4^30>3*24^10

5 tháng 11 2023

Ta có: 4^30=2^30.2^30=2^30.4^15

3.24^10=3.(3.2^3)^10=2^30.3^11

Ta thấy: 3^11<3^15<4^15 => 4^15>3^11

Vì 4^15>3^11 nên 2^30.4^15>2^30.3^11

=>2^30+3^30+4^30>3.24^10

11 tháng 8 2019

\(3\times24^{10}\)

\(=3\times\left(2^3\times3\right)^{10}\)

\(=3\times3^{10}\times\left(2^3\right)^{10}\)

\(=3^{11}\times2^{30}\)

\(=3^{11}\times\left(2^2\right)^{15}\)

\(=3^{11}\times4^{15}\)

Vì \(3^{11}\)<\(4^{15}\left(3;4;11;15\inℕ\right)\)

Nên \(3^{11}\times4^{15}\)\(4^{15}\times4^{15}=4^{30}\)

Do đó : \(3\times24^{10}\)\(4^{30}\)

Vậy \(2^{30}+3^{30}+4^{30}\)\(3\times24^{10}\)

4^30=2^30*2^30

=2^30*4^15

3*24^10=3*3^10*8^10=3^11*2^30

mà 4^30>3^11

nên 2^30+3^30+4^30>3*24^10

4^30=2^30*2^30

=2^30*4^15

3*24^10=3*3^10*8^10=3^11*2^30

mà 4^30>3^11

nên 2^30+3^30+4^30>3*24^10

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Lời giải:

$4^{30}=(4^3)^{10}=64^{10}> 48^{10}=(2.24)^{10}=2^{10}.24^{10}> 3.24^{10}$

6 tháng 3 2016

 có;

4^30=2^30.2^30=(2^3)^10.(2^2)^15=8^10.3^15>8^10.3^11

=8^10.3^10.3=3.24^10

Vậy 2^30.3^30.4^30>3.24^10

****

6 tháng 3 2016

Ta có:

3.24^10=3^11.4^15 

=> 4^30=4^15.4^15 
 4^15>3^11 (vì phần nguyên bé và mũ cũng bé nên ta có:4^15>3^11)
=>3.24^10<<4^30<<<2^30+3^20+4^30