tìm giá trị nguyên lớn nhất của x thỏa mãn |x.(x-3)|=x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
câu 1 dễ bn tự làm nhé
câu 2 nhận xét (x-2)^2 >=0
=> 15-(x2)^2 >= 15
dấu = xảy ra khi và chỉ khi
x-2 = 0
=> x= 2
câu 3 x-5 <0
=> x < 5 (1)
3-x <0
=> x>3 (2)
từ (1) và (2) => 3< x< 5
=> x= 4
câu 1: x=1
câu 2: vì \(^{\left(x-2\right)^2}\)\(\ge\)0
=> 15-\(\left(x-2\right)^2\)\(\le\)0
Dấu "=" xảy ra <=> x-2=0
<=> x=2
Câu 3: x-5 < 0 => x<5
và 3-x >0 =>x>3
=> 3<x<5
\(\Leftrightarrow\orbr{\begin{cases}x\cdot\left(x-3\right)=x\\x\cdot\left(x-3\right)=-x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-3=\frac{x}{x}\\x-3=-\frac{x}{x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1+3\\x=-1+3\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
Vậy x=2 hoặc x=4
⇔\orbr{x⋅(x−3)=xx⋅(x−3)=−x⇔\orbr{x−3=xxx−3=−xx⇔\orbr{x−3=1x−3=−1⇔\orbr{x=1+3x=−1+3⇔\orbr{x⋅(x−3)=xx⋅(x−3)=−x⇔\orbr{x−3=xxx−3=−xx⇔\orbr{x−3=1x−3=−1⇔\orbr{x=1+3x=−1+3
⇔\orbr{x=4x=2⇔\orbr{x=4x=2
Vậy x=2 hoặc x=4