Tìm điều kiện xác định của 5 - 3 x
A. x ≤ 5 3
B. x ≥ 5 3
C. x ≥ 3 5
D. x ≤ 3 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(-\dfrac{\sqrt{6}}{2}\le x\le\dfrac{\sqrt{6}}{2}\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
c: ĐKXĐ: \(-\sqrt{5}< x< \sqrt{5}\)
d: ĐKXĐ: \(x\le\sqrt[3]{-5}\)
Bài 1:
\(a,ĐK:x\ne\pm5\\ b,P=\dfrac{x-5+2x+10-2x-10}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{1}{x+5}\\ c,P=-3\Leftrightarrow x+5=-\dfrac{1}{3}\Leftrightarrow x=-\dfrac{16}{3}\\ d,P\in Z\Leftrightarrow x+5\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Leftrightarrow x\in\left\{-6;-4\right\}\)
Bài 2:
\(a,\Leftrightarrow\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}=0\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow\dfrac{x\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}=0\Leftrightarrow\dfrac{-x}{x+2}=0\Leftrightarrow x=0\)
a/ ĐKXĐ : \(-2x+3\ge0\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
b/ ĐKXĐ : \(3x+4\ge0\)
\(\Leftrightarrow x\ge-\dfrac{4}{3}\)
c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x
d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5< 0\)
\(\Leftrightarrow x< -\dfrac{5}{3}\)
e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)
P.s : không chắc lắm á!
ĐKXĐ: \(\left\{{}\begin{matrix}2x+5\ne0\\x-2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{5}{2}\\x\ne2\end{matrix}\right.\)
D
\(M=\dfrac{4}{x+2}+\dfrac{3}{x-2}-\dfrac{5x+2}{x^2-4}\left(dkxd:x\ne\pm2\right)\)
\(=\dfrac{4}{x+2}+\dfrac{3}{x-2}-\dfrac{5x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)+3\left(x+2\right)-\left(5x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8+3x+6-5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2}{x+2}\)
Để \(M=\dfrac{2}{5}\) thì \(\dfrac{2}{x+2}=\dfrac{2}{5}\)
Suy ra :
\(2.5=2\left(x+2\right)\)
\(\Leftrightarrow2x+4=10\)
\(\Leftrightarrow x=3\)
Vậy \(M=\dfrac{2}{5}\) thì x = 3
Đề bài là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\) hay là \(B=\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2}-\left(x+2\right)^2?\)
\(\dfrac{\left(x-1\right)^2-4}{\left(2x+1\right)^2-\left(x+2\right)^2}\)
viết lại biểu thức
1: ĐKXĐ: 2-3x>=0
=>x<=2/3
2: ĐKXĐ: -3x^2>=0
=>x^2<=0
=>x=0
3: ĐKXĐ: -2023x^3>=0
=>x^3<=0
=>x<=0
4: ĐKXĐ: -2(x-5)>=0
=>x-5<=0
=>x<=5
5: ĐKXĐ: -5/2-2x>=0
=>2-2x<0
=>2x>2
=>x>1
6: ĐKXĐ: (x^2+1)(3-2x)>=0
=>3-2x>=0
=>-2x>=-3
=>x<=3/2
7: ĐKXĐ: (-x^2-1)(3-x)>=0
=>(x^2+1)(x-3)>=0
=>x-3>=0
=>x>=3
ĐK: `x \ne 3; x \ne -3`
`A=3/(x-3)-(6x)/(9-x^2)+x/(x+3)`
`=3/(x-3)+(6x)/(x^2-9)+x/(x+3)`
`=3/(x-3)+(6x)/((x-3)(x+3))+x/(x+3)`
`=(3(x+3)+6x+x(x-3))/((x-3)(x+3))`
`=(3x+9+6x+x^2-3x)/((x+3)(x-3))`
`=(x^2+6x+9)/((x-3)(x+3))`
`=((x+3)^2)/((x-3)(x+3))`
`=(x+3)/(x-3)`
`x=5 => A=(5+3)/(5-3)=4`
ĐKXĐ:\(\left\{{}\begin{matrix}x-3\ne0\\9-x^2\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x^2\ne9\\x\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)
\(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\\ =\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{6x}{\left(3-x\right)\left(3+x\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x^2-3x}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\\ =\dfrac{x+3}{x-3}\)
Thay x=5 vào \(\dfrac{x+3}{x-3}=\dfrac{5+3}{5-3}=\dfrac{8}{2}=4\)
Đáp án đúng : A