Gọi H là hình phẳng giới hạn bởi đồ thị hàm số y = x 2 − x 2 , trục tung, đường thẳng x = 1 . Tính thể tích V của khối tròn xoay thu được khi quay hình H quanh trục Ox.
A. V = πln 2 4
B. V = πln 2 2
C. V = ln 2 4
D. V = ln 2 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm hoành độ giao điểm của hai dồ thị, ta có:
( x - 1 ) e 2 x = 0 => x = 1
Vậy thể tích của khối tròn xoay thu được khi quay (H) quanh Ox được tính bởi
Đặt: u = ( x - 1 ) 2 , d v e 4 x d x . Ta có du = 2(x -1)dx và v = e 4 x 4 .
Áp dụng công thức tích phân từng phần ta được
Đặt u 1 = x - 1 , d v 1 = e 4 x d x , ta có d u 1 = d x , v 1 = e 4 x 4
Vậy chọn đáp án A.
Đáp án A
Phương trình hoành độ giao điểm x 4 − x 2 = 0 ⇔ x = 0
Khi đó:
V = π ∫ 0 1 x 4 − x 2 d x = − π 2 ∫ 0 1 d 4 − x 2 4 − x 2 = − π 2 ln 4 − x 2 0 1 = π 2 ln 4 3
Đáp án D.
Thể tích V của khối tròn xoay cần tính
V H = π . ∫ 0 1 f 2 x d x = π . ∫ 0 1 x . e 2 x 2 d x .
Đặt
t = e 2 x 2 ⇔ d t = 2 x 2 ' e 2 x 2 d x = 4 x . t d x ⇔ x d x = d t 4 t
và đổi cận x = 0 → t = 1 x = 1 → t = e 2 .
Khi đó V H = π ∫ 1 e 2 t . d t 4 t = π 4 ∫ 1 e 2 d x = π 4 e 2 − 1 .
Đáp án D
Phương trình hoành độ giao điểm x e x 2 = 0 ⇔ x = 0 ⇒ V = π ∫ 0 1 xe 2 x 2 d x = 1 4 π e 2 - 1 .