tìm 12 số nguyên dương để tổng của chúng bằng tích của chúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
Gọi 3 số cần tìm là \(x,y,z\left(x,y,z\in Z;x,y,z>0\right)\)
Ta có : \(xyz=2\left(a+b+c\right)\)
Giả sử :\(x\ge y\ge z\Leftrightarrow xyz\le2.3x\)
\(xy\le6\) mà\(x,y\in Z\)
\(\Leftrightarrow xy\in\left\{1;2;3;4;5;6\right\}\)
Giải các trường hợp, ta được (x,y,z) là (1,3,8) ; (1,4,5) ; (2,2,4) và các hoán vị
Tổng quát đây: N số nguyên dương sao cho tổng và tích của chúng bằng nhau là
N, 2, và N-2 số 1
Áp dụng cho trường hợp N = 3 được 3 số: 3,2,1
Quên mất, cách làm:
Với N= 3.
Giả sử tồn tại 3 số bằng nhau a thỏa mãn điều trên: a^3 = 3.a ~~>a^2 = 3, không tồn tại a nguyên dương. Như vậy 3 số cần tìm không bằng nhau.
Gọi a là số lớn nhất trong 3 số a,b,c đó: ~~>a.b.c = a+b+c<3.a thế thì b.c<3. Vì b,c nguyên dương nên b.c = 2 hoặc b.c= 1. Điều này có nghĩa là b= 1 hoặc c =1.
Không mất tính tổng quát, giả sử c= 1. Thế thì a.b = a+b+1 ~~> a.b -a -b -1 = 2~~>(a-1)(b-1) = 2 ~~~>a,b là hai số 2 và 3
Kết luận 3 số cần tìm là 1,2,3
Gọi 4 số tự nhiên là a, b, c, d (a, b, c, d∈N∗)
Không mất tính tổng quát, giả sử a≥b≥c≥d≥1
Ta có:
abcd=a+b+c+d (1)
⇒abcd≤4a
⇒bcd≤4 (a>0
⇒d3≤4
⇒d=1
Với d=1, ta có:
(1)⇔abc=a+b+c+1 (2)
⇒abc≤3a+1
⇒bc≤3+1a≤4
⇒c2≤4
⇒c=1∨c=2
TH1: c=1. Ta có:
(2)⇔ab=a+b+2
⇔(a−1)(b−1)=3
Vì a≥1; b≥1⇒a−1≥0; b−1≥0a≥1; b≥1⇒a−1≥0; b−1≥0
Mà a≥b⇒a−1≥b−1
Do đó a−1=3; b−1=1⇔a=4
TH2: c=2. Ta có:
(2)⇔ab=a+b+3(2)
⇔(a−1)(b−1)=4
Vì a≥1; b≥1⇒a−1≥0; b−1≥0
Mà a≥b⇒a−1≥b−1
Do đó: a−1=4; b−1=1a−1=4; b−1=1 hoặc a−1=2; b−1=2
⇔a=5; b=2⇔a=5; b=2 hoặc a=3; b=3
Vậy 4 số tự nhiên cần tìm là (1; 1; 2; 4); (1; 2; 3; 3); (1; 2; 2; 5)(1; 1; 2; 4); (1; 2; 3; 3); (1; 2; 2; 5)
Ta có a.b.c = a+b+c
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. ﴾b khác 2 thì tích b.c > 3 là vô lý﴿.
Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.
gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )
theo đề ta có:
x+y+z=xyz
=>\(\frac{x+y+z}{xyz}=\frac{xyz}{xyz}\)
\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\)
\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Nếu \(x\ge y\ge z\ge1\)thì
\(1=\frac{1}{yz}=\frac{1}{xz}=\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)
=>\(1\le\frac{3}{z^2}\)
\(\Leftrightarrow z^2\le3\)
nên chỉ có z=1 mới thỏa mãn \(z^2\le3\text{ và }z>0\)
suy ra 3 số đó là 1;2;3
gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )
theo đề ta có:
x+y+z=xyz
=>x+y+zxyz =xyzxyz
⇔xxyz +yxyz +zxyz =1
⇔1yz +1xz +1xy =1
Nếu x≥y≥z≥1thì
1=1yz =1xz =1xy ≤1z2 +1z2 +1z2 =3z2
=>1≤3z2
⇔z2≤3
nên chỉ có z=1 mới thỏa mãn z2≤3 và z>0
suy ra 3 số đó là 1;2;3