OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay!
OLM tuyển CTV cộng đồng hỏi đáp, đăng kí ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hàm số f(x) thỏa mãn f ' ( x ) 2 + f ( x ) . f ' ' ( x ) = 15 x 4 + 12 x , ∀ x ∈ R và f(0)=f '(0)=1. Giá trị của f 2 ( 1 ) bằng
A. 9 2
B. 5 2
C. 10
D. 8.
Cho hàm số f(x) thỏa mãn ∫ 1 2 ( 2 x + 3 ) . f ' ( x ) d x = 15 và 7 . f ( 2 ) - 5 . f ( 1 ) = 8 Tính I= ∫ 1 2 f ( x ) d x .
Đáp án D.
Cho hàm số f(x) thỏa mãn ∫ 1 2 ( 2 x + 3 ) f ' ( x ) d x = 15 và 7f(2)-5f(1)=8. Tính I = ∫ 1 2 f ( x ) d x
A. I = 7 2
B. I = - 2 7
C. I = 2 7
D. I = - 7 2
Cho hàm số f(x) thỏa mãn f ( 2 ) = - 1 5 và f ' ( x ) = x 3 [ f ( x ) ] 2 với mọi x thuộc R. Giá trị của f(1) bằng
A. - 4 35
B. - 79 20
C. - 4 5
D. - 71 20
Cho hàm số F ( x ) = a x 3 + b x 2 + c x + 1 là một nguyên hàm của hàm số f(x) thỏa mãn f(1) = 2, f(2) = 3, f(3) = 4. Hàm số F(x) là
Chọn D.
Ta có
Vậy F(x)= 1 2 x 2 + x + 1
Cho hàm số f(x) xác định trên R\{±1} thỏa mãn f '(x) = 1 x 2 - 1 . Biết f(–3) +f(3) = 0 và f - 1 2 + f 1 2 = 2. Giá trị T = f(–2) + f(0) + f(4) bằng:
A. T = 1 2 ln 9 5
B. T = 2 + 1 2 ln 9 5
C. T = 3 + 1 2 ln 9 5
D. T = 1 + 1 2 ln 9 5
Phương pháp:
Cách giải:
=> f(x) =
Cho hàm số y = f ( x ) thỏa mãn: f ( 2 x - 1 x + 2 ) = 3 x + 5 2 x - 1 ( x ≠ 2 ; 1 2 ) . Tìm lim x → + ∞ f ( x )
A. 4 3
B. 1 5
C. 3 2
D. 2 3
Cho hàm số y=f(x) liên tục trên ( 0 ; + ∞ ) và thỏa mãn 2xf'(x)+f(x)= 3 x 2 x biết f(1)= 1 2 . Gía trị f(2) bằng
Đáp án A.
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [1;2] thỏa mãn ∫ 1 2 ( x - 1 ) 2 f ( x ) d x = - 1 3 , f(2) = 0 và ∫ 1 2 f ' ( x ) 2 d x = 7 . Tính tích phân ∫ 1 2 f ( x ) d x
A. I = 7 5
B. I = - 7 5
C. I = - 7 20
D. I = 7 20
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [1;4] thỏa mãn f(1)=-1, f(4)=-8 và x 3 ( f ' ( x ) ) 2 - f ( x ) = 9 x 3 - x - 3 x , ∀ x ∈ [ 1 ; 4 ] . Tích phân ∫ 1 4 f ( x ) d x bằng
A. -7
B. - 89 6
C. - 79 6
D. -8
Cho hàm số f(x) xác định trên R \ { - 1 ; 1 } thỏa mãn f'(x)= 2 x x 2 - 1 và f ( - 2 ) = 3 , f ( - 1 2 ) = 2 Giá trị của biểu thức f(-2)+f( 1 2 ) bằng
Đáp án C.