Người ta trồng 3003 cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ 3 trồng 3 cây, ..., hàng thứ k trồng k cây. Hỏi người ta đã trồng bao nhiêu hàng cây ?
A. 77
B. 78
C. 76
D. 75
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Số cây mỗi hàng (bắt đầu từ hàng thứ nhất) lập thành một cấp số cộng có u1 = 1; d = 1
Giả sử có n hàng cây thì
Ta có 3003 = Sn = nu1 + ⇔ n2 + n – 6006 = 0 ⇔ n = 77.
Chọn B.
Gọi số hàng cây là n.
Gọi số cây lần lượt trên các hàng là 1; 2; 3..; n.
Đây là một cấp số cộng với số hạng đầu u1 = 1; d = 1 .
Ta có:
Vậy số hàng cần tìm là 77.
Ta gọi số hàng cây là: n
Thì ta có số cây sẽ là: 1 + 2 + 3 +...... n-1 + n = n(n+1)/2 (công thức n(n+1) hình như đã học rồi và đã đc chứng minh)
Nếu theo bạn nói thì ta sẽ có một công thức sau: n(n+1)/2 = 3003
<=> n² + n - 6006 = 0
=> n= 77 hoặc n= -78
Vậy ta chọn số hàng cây là 77
Đáp án C.
Phương pháp: Sử dụng tổng
Cách giải: Giả sử trồng được n hàng cây với quy luật trên thì số cây trồng được là:
Đáp án A
Đây là một dãy cấp số cộng với