chứng minh :
nếu 3a+2b : 17 thì 10a+b :17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: chia hết cho 7 nên chia hết cho 7. |
a. Ta có: chia hết cho 7 nên chia hết cho 7.
không chia hết cho 7 nên không chia hết cho 7.
3. .
Ta sẽ đi chứng minh chia hết cho với mọi nguyên.
Thật vậy:
.
Do là 5 số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3, một số chia hết cho 5.
Mà nên tích chia hết cho .
Cũng do là ba số nguyên liên tiếp nên tồn tại ít nhất một số chia hết cho 2, một số chia hết cho 3.
Suy ra tích chia hết cho .
Ta có đpcm.
chứng minh rằng nếu (3a+2b)chia hết cho 17 thì (10a+b)chia hết cho 17
AI GIẢI RÕ RA ĐC MÌNH CHO LINE
Ta có 3a+2b chia hết cho 17
=>9(3a+2b) chia hết cho 17
=>27a+18b chia hết cho 17
=>(27a+18b)-(17a+17b) chia hết cho 17 ( do 17a+17b chia hết cho 17)
=>(27a-17a)+(18b-17b) chia hết cho 17
=>10a+b chia hết cho 17 (đpcm)
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
\(3a+2b⋮17\\ \Rightarrow\left\{{}\begin{matrix}3a⋮17\\2b⋮17\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮17\\b⋮17\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}10a⋮17\\b⋮17\end{matrix}\right.\\ \Rightarrow10a+b⋮17\)
Lời giải:
$3a+2b\vdots 17$
$\Rightarrow 3a+2b+17a\vdots 17$
$\Rightarrow 20a+2b\vdots 17$
$\Rightarrow 2(10a+b)\vdots 17$
$\Rightarrow 10a+b\vdots 17$ (do $(2,17)=1$)
Ta có đpcm.
Ta có : 2.(10a+b) - (3a +2b) = 20a + 2b - 3a -2b
= 17a
Vì 17chia hết cho17=> 17a chia hết cho 17
=> 2.(10a+b)- (3a +2b) chia hết cho 17
Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17
Mà (2,17) =1=> 10a+b chia hết cho 17
Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Ta có: 2 ( 10a + b ) - ( 3a + 2b ) = 20a + 2b - 3a - 2b
= 17a
Vì 17 ⋮ 17 => 17a ⋮ 17
=> 2 ( 10a + b ) - ( 3a + 2b ) ⋮ 17
Vì 3a + 2b ⋮ 17 => 2 ( 10a + b ) ⋮ 17
Mà ( 2,17 ) = 1 => 10a + b ⋮ 17
Vậy nếu 3a + 2b ⋮ 17 thì 10a + b ⋮ 17
HT
Ta có: 2(10a+b)=20a+2b
Có: 20a+2b-(3a+2b)=20a+2b-3a-2b=20a-3a+(2b-2b)=17a
Vì 17 chia hết cho 17 nên 17a chia hết cho 17
Hay 20a+2b-(3a+2b) chia hết cho 17
Mà 3a+2b chia hết cho 17 nên 20a+2b chia hết cho 17
Hay 2(10a+b) chia hết cho 17
Mà 2 và 17 là 2 số nguyên tố chùng nhau
nên 10a+b chia hết cho 17
Vậy 10a+b chia hết cho 17 khi 3a+2b chia hết cho 17